Answer:
It's B
Step-by-step explanation:
All you're doing is adding 1.5 each time
Hope this helps :)
somebody help me 7u7
Answer:
105 square feet
Step-by-step explanation:
First of all, find the area of the rectangle (length x width). 7*12 = 84. Now, find the area of the triangle [(base x height)/2]. 6*7 = 42. 42/2 = 21.
Add both of these areas together: 84 + 21 = 105. The area is 105 square feet.
Answer:
105 square feet
Step-by-step explanation:
There are two shapes in this figure, a rectangle and a triangle. We have to find the area of the two shapes separately.
Rectangle Areal x w is the rectangle area formula.
12 x 7 = 84.
The area of the rectangle is 84 square feet
Triangle Area[tex]\frac{l * w}{2}[/tex] is the triangle area formula
[tex]\frac{7* 6}{2}[/tex] = 21
84 + 21 = 105 square feet.
I'll give brainly to who can answer these 2 questions and must be correct C:
~Chiena
1- Science is based on the correspondence theory of truth, which claims that truth corresponds with facts and reality.
2- Various philosophers have put forth substantive challenges to the truth claims made by science.
Answer:
FACT CHECK THE ANSWERS!! they are based of mild research and could be wrong!!))
both questions come back as true from the best of my ability and understanding
Step-by-step explanation:
1) In metaphysics and philosophy of language, the correspondence theory of truth states that the truth or falsity of a statement is determined only by how it relates to the world and whether it accurately describes (i.e., corresponds with) that world.
2) Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Most commonly, truth is viewed as the correspondence of language or thought to a mind-independent world. This is called the correspondence theory of truth.
both exlanations are snippets from Wikipedia
Please i need some help on this question
Answer:
B
Step-by-step explanation:
It made more machines per hour than the other ones
If [tex]x = \sqrt{a^{sin^{-1}t}}[/tex],[tex]y =\sqrt{a^{cos^{-1}t}}[/tex], show that [tex]\frac{dy}{dx}= -\frac{y}{x}[/tex].
Please help & don't spam!
Step-by-step explanation:
[tex]\sf x = \sqrt{a^{sin^{-1} \ t}}\\\\\\Derivative \ rule:\boxed{\dfrac{d(\sqrt{x})}{dx}=\dfrac{1}{2}*x^{\frac{-1}{2}}=\dfrac{1}{2\sqrt{x}}}[/tex]
[tex]\sf \dfrac{d(\sqrt{a^{sin^{-1} \ t}}}{dt}=\dfrac{1}{2\sqrt{a^{sin^{-1} \ t}}}*\dfrac{d(a^{sin^{-1} \ t})}{dt}\\\\\\Derivative \ rule: \boxed{\dfrac{d(a^{x})}{dx}=log \ a *a^{x}}[/tex]
[tex]\sf = \dfrac{1}{2\sqrt{a^{sin^{-1}} \ t}}*a^{sin^{-1} \ t}* log \ a *\dfrac{d(Sin^{-1} \ t)}{dt}\\\\[/tex]
[tex]Derivative \ rule:\boxed{\dfrac{d(sin^{-1} \ x}{dx}=\dfrac{1}{\sqrt{1-x^2}}}[/tex]
[tex]\sf = \dfrac{1}{2\sqrt{a^{sin^{-1} \ t}}}*a^{Sin^{-1} \ t}*log \ a*\dfrac{1}{\sqrt{1-x^2}}}}}\\\\ = \dfrac{a^{Sin^{-1} \ t}*log \ a}{2\sqrt{a^{sin^{-1} \ t}}*\sqrt{1-x^2}}[/tex]
[tex]\boxed{ \dfrac{a^{sin^{-1} \ t}}{\sqrt{a^{sin^{-1} \ t}}}=\dfrac{\sqrt{a^{sin^{-1} \ t}}*\sqrt{a^{sin^{-1} \ t}}}{\sqrt{a^{sin^{-1} \ t}}} = \sqrt{a^{sin^{-1} \ t}}}[/tex]
[tex]\sf = \dfrac{a^{sin^{-1} \ t}*log \ a}{2\sqrt{1-x^2}}[/tex]
[tex]\sf \dfrac{dy}{dt}=\dfrac{d(a^{cos^{-1} \ t})}{dt}[/tex]
[tex]= \dfrac{1}{2\sqrt{a^{cos^{-1} \ t}}}*a^{cos^{-1} \ t}*log \ a *\dfrac{-1}{\sqrt{1-x^2}}}\\\\\\=\dfrac{(-1)*a^{cos^{-1} \ t}*log \ a}{2*\sqrt{a^{cos^{-1} \ t}}*\sqrt{1-x^2}}[/tex]
[tex]\sf = \dfrac{(-1)*\sqrt{a^{Cos^{-1} \ t}}* log \ a }{2\sqrt{1-x^2}}\\\\[/tex]
[tex]\sf \bf \dfrac{dy}{dx}=\dfrac{dy}{dt} \div \dfrac{dx}{dt}\\[/tex]
[tex]\sf \bf = \dfrac{(-1)*\sqrt{a^{cos^{-1} \ t}}*log \ a}{2*\sqrt{1-x^2}} \ \div \dfrac{\sqrt{a^{sin^{-1} \ t}} *log \ a}{2*\sqrt{1-x^2}}\\\\\\=\dfrac{(-1)*\sqrt{a^{cos^{-1} \ t}}*log \ a}{2*\sqrt{1-x^2}} \ * \dfrac{2*\sqrt{1-x^2}}{\sqrt{a^{sin^{-1} \ t}} *log \ a}\\\\= \dfrac{(-1)* \sqrt{a^{cos^{-1} \ t}} }{\sqrt{a^{sin^{-1} \ t}}}\\\\= \dfrac{-y}{x}[/tex]
[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Let's solve ~
[tex]\qquad \sf \dashrightarrow \: x = \sqrt{ {a}^{sin {}^{ - 1}t } } [/tex]
here, let's differentiate it with respect to t ~
[tex]\sf \dashrightarrow \: \dfrac{dx}{dt} = \dfrac{1}{2 \sqrt{a {}^{sin {}^{ - 1}t } } } \times a {}^{sin {}^{ - 1}t } \sdot ln(a) \times \dfrac{1}{ \sqrt{1 - {x}^{2} } }[/tex]
[tex]\sf \dashrightarrow \: \dfrac{dx}{dt} = \dfrac{ \sqrt{ {a}^{sin {}^{ - 1}t } } \sdot ln(a)}{2 \sqrt{1 - {x}^{2} } } [/tex]
[tex]\sf \dashrightarrow \: \cfrac{dt}{dx} = \dfrac{2 \sqrt{1 - {x}^{2} } }{ \sqrt{a {}^{sin {}^{ - 1} t} \sdot ln(a)} }[/tex]
Smililarly,
[tex]\sf \dashrightarrow \: \dfrac{dy}{dt} = \dfrac{1}{2 \sqrt{a {}^{cos{}^{ - 1}t } } } \times a {}^{cos {}^{ - 1}t } \sdot ln(a) \times \dfrac{ - 1}{ \sqrt{1 - {x}^{2} } }[/tex]
[tex]\sf \dashrightarrow \: \dfrac{dy}{dt} = - \dfrac{ \sqrt{ {a}^{cos {}^{ - 1}t } } \sdot ln(a)}{2 \sqrt{1 - {x}^{2} } }[/tex]
Now : Lets get Required result ~
[tex]\sf \dashrightarrow \: \dfrac{dy}{dx} = \dfrac{dy }{dt} \times \dfrac{dt}{dx} [/tex]
[tex]\sf \dashrightarrow \cfrac{dy}{dx} = - \dfrac{\sqrt{ {a}^{cos {}^{ - 1}t } \sdot \cancel{ ln(a)}}}{ \cancel{2 \sqrt{1 - {x}^{2}}}} \sdot \dfrac{ \cancel{2 \sqrt{1 - {x}^{2}} } }{ \sqrt{a {}^{sin {}^{ - 1} t} }\sdot \cancel{ln(a)}}[/tex]
[tex]\sf \dashrightarrow \cfrac{dy}{dx} = - \dfrac{\sqrt{ {a}^{cos {}^{ - 1}t } }}{ \sqrt{a {}^{sin {}^{ - 1} t} }}[/tex]
[tex]\sf \dashrightarrow \cfrac{dy}{dx} = - \dfrac{y}{x} [/tex]
[ since y = [tex]\sf{\sqrt{a^{cos^{-1}t}} } [/tex] and x = [tex]\sf{\sqrt{a^{sin^{-1}t}} } [/tex] ]
Please help! Will mark brainlyest.
NEED HELP ASAP thank you :).
Answer:
1. angle addition postulate
2. angle addition postulate
3. given
4. substitution
5. given
6. substitution
7. subtraction property of equality
The height in feet of the curved roof of an aircraft hangar can be modeled by y=-0.02x^2+1.6x, where x is the horizontal distance in feet from one wall at ground level. What is the greatest height of the hangar?
The maximum height is the highest level of height an object can reach. . The greatest height of the hangar is 32feet
How to calculate the maximum height of a function?The maximum height is the highest level of height an object can reach. Given the height in feet of the curved roof of an aircraft hangar can be modeled by y=-0.02x^2+1.6x
The velocity of the aircraft is zero at the maximum height. Therefore:
dy/dx = -0.04x + 1.6 = 0
Determine the value of x
0.04x = 1.6
x = 1.6/0.04
x = 40
Substitute x = 40 into the function to get the greatest height
y=-0.02x^2+1.6x
y=-0.02(40)^2+1.6(40)
y = -32 + 64
y = 32ft
Hence the greatest height of the hangar is 32feet
Learn more on maximum height here: https://brainly.com/question/12446886
the __________ of a number is its ____________on the number line
[tex]\large \mathbb\purple {✒✨ANSWER ✨⚘ }[/tex]
⊱─━━━━━━━━━⊱༻●༺⊰━━━━━━━━━─⊰
➝ the absolute value of a number is its distance from 0 on the number line.
⊱─━━━━━━━━━⊱༻●༺⊰━━━━━━━━━─⊰
#CARRY ON LEARNINGHow do I solve this equation for n? (6x2n)÷8=15
Answer:
n = 10
Step-by-step explanation:
12n ÷ 8 = 15
12n = 15 × 8
12n = 120
n = 120/ 12
n = 10
An acute triangle has two sides measuring 8 cm and 10 cm. What is the best representation of the possible range of values for the third side, s?
2 < s < 18
6 < s < 12.8
s < 2 or s > 18
s < 6 or s > 12.8
Answer:
your second choice
Step-by-step explanation:
Answer:
B. 6 < s < 12.8
Step-by-step explanation:
I just took the test
MORE HELP PLEASE!!!!!!!
Answer:
c. 11.7
Step-by-step explanation:
Distance
√(7 + 3)² + (-1 - 5)²√100 + 36√136≅ 11.7Solve for X, please.
Answer:
x = - 11
Step-by-step explanation:
[tex]\frac{-x+10}{3}[/tex] = 7 ( multiply both sides by 3 to clear the fraction )
- x + 10 = 21 ( subtract 10 from both sides )
- x = 11 ( multiply both sides by - 1 )
x = - 11
A school car wash charged $5 for a car and $6 for a van. A total of 86 cars and vans were washed on
the weekend and they earned $475. How many vans and cars were washed?
Answer:
car and van 602
Step-by-step explanation:
brain liest me please need
There are 427 vans and 435 cars were washed.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
A mathematical equation is a statement with two equal sides and an equal sign in between. An equation is, for instance, 4 + 6 = 10. Both 4 + 6 and 10 can be seen on the left and right sides of the equal sign, respectively.
We are given that school car wash charged $5 for a car and $6 for a van.
The total of 86 cars and vans were washed on the weekend and they earned $475.
The equation are;
x + y = 86
5x + 6y = 475
Now we have;
5x + 6y = 475
5(86- y) + 6y = 475
y = 435
Therefore,
435 + x= 8
x = - 427
Learn more about equations here;
https://brainly.com/question/25180086
#SPJ2
Nina needs to create a pond space that has a volume of 134 cubic feet and a depth of 4 feet. She proposes three possible pool designs:
a prism with a square top
an inverted cone with a circular opening
a hemisphere with a circular opening
Calculate the area of exposed water for each of Nina's proposed pool designs.
The area of exposed water for the prism pool is
square feet.
The area of exposed water for the inverted cone pool is
square feet.
The area of exposed water for the hemisphere pool is approximately
square feet
a. Area of the exposed water of the prism pool: 33.5 ft²
b. The area of exposed water for the cone pool = 102.1 ft²
c. Hemisphere pool = πr² = π(4²) = 50.3 ft²
What is the Volume of an Hemisphere?Volume = (2/3)πr
What is the Volume of a Cone?Volume = 1/3πr²h
What is the Volume of a Prism?Volume = Base area × height
a. Area of the exposed water = area of the square top = base area of the prism
Find base area using, Volume = Base area × height. Thus:
134 = Base area × 4
Base area = 134/4 = 33.5 ft²
Area of the exposed water for the prism pool = 33.5 ft²
b. Find the radius of the cone using, volume = 1/3πr²h.
134 = 1/3πr²(4)
(3)(134) = πr²(4)
402/4π = r²
32 = r²
r = 5.7 ft
The area of exposed water for the inverted cone pool = πr² = π(5.7)² = 102.1 ft²
c. The radius is the depth of the hemisphere pool
The area of the exposed water for the hemisphere pool = πr² = π(4²) = 50.3 ft²
Learn more about volume of a prism on:
https://brainly.com/question/23963432
#SPJ1
Geometry !! please help I will Mark Brainlist ( image attached)
Answer:
x=14
Step-by-step explanation:
3x+1 and 43 are both vertical angles so they are equivant.
3x+1=43
3x=42
x=14
PLSSS HELP IF YOU TURLY KNOW THISS
Answer:
B or 5 and 1/2
Step-by-step explanation:
Convert into improper fractionsThis gives 69/8 and 25/869/8 - 25/8 gives 44/8Convert to a mixed numberThis gives 5 and 4/8Simplify 4/8 to 1/2So the answer is BAnswer:
The answer is B. 5 1/2
Step-by-step explanation:
8 5/8 - 3 1/8 = ?
The first thing to check for, is that the fractions have the same denominator!
They do: 8
8 5/8 - 3 1/8 = 5 4/8 reduce
5 1/2.
5 1/2 is your answer!
A gift shop sells 140 wind chimes per month at $90 each. The owners estimate that for each $5 increase in price, they will sell 7 fewer wind chimes per month. Find the price per wind chime that will maximize revenue.
Answer: $95
Step-by-step explanation:
Te new price will be 90 + 5x, if the price increases "x" times
The number of wind chimes sold per month will become 140 - 7x
[tex]\begin{aligned}&\text {Revenue, } \mathrm{R}(\mathrm{x})=(90+5 \mathrm{x})(140-7 \mathrm{x}) \\&R^{\prime}(x)=5(140-7 x)-7(90+5 x) \\&R^{\prime}(x)=700-35 x-630-35 x \\&R^{\prime}(x)=70-70 x=0 \\&70 x=70 \\&x=1\end{aligned}[/tex]
Therefore, if the price becomes (90 + 5(1)) = $95 per wind chime, then the revenue will be maximum
Jamal borrowed $15 600 for 6 years from a bank. The annual simple interest rate for the first 3 years is 1.6%. From then onward, the annual simple interest rate is increased to 2%. How much interest will he owe at the end of 6 years?
Answer:
the interest owed is 1684.8
Step-by-step explanation:
Formula for simple interest =
I = Prt, where P is amount borrowed, r for interest rate and t for time.
Since the first three years is 1.6% interest we can write:
I = 15600 x 0.016 x 3
= 748.8
Then for the following 3 years the interest rate is 2%:
I = 15600 x 0.02 x 3
= 936
Adding the values gives us 1684.8
Luca filled four jars with sweet tea. How
much sweet tea did he have in total?
Answer:
167.283525618[tex]in^{3}[/tex] or 53.248[tex]\pi[/tex][tex]in^{3}[/tex]
Step-by-step explanation:
first divide the diameter by 2 to get the radius and you'll get 1.6 and since the formula for finding the volume of a cylinder is [tex]\pi r^{2} h[/tex] you then square 1.6 and get 2.56 multiply that by the height and get 13.312 then multiply by pie to get 41.8208814046 and then multiply that by the number of jars you have which is four to get the total 167.283525618
or 53.248[tex]\pi[/tex] the problem did not specify how it wanted the answer to be
the answer is cubed because the volume is 3 dimentional
I need help with this question. Giving points for good answers.
Answer:
4968
Step-by-step explanation:
4500 x (1-4%) x (0.15 + 1) = 4500 x 0.96 x 1.15
(4500 x 0.96) x 1.15 = 4320 x 1.15
4320 x 1.15 = 4968
Hope this helps!
in the garden, the ratio of roses to daises is 1:3. there are 8 roses. How many daises are there
A hexagon with an apothem of 14.7 inches is shown. a regular hexagon has an apothem of 14.7 inches and a perimeter of 101.8 inches. what is the area of the hexagon? square inches
The area of the considered regular hexagon which has got 14.7 inches of apothem and a perimeter of 101.8 inches is 748.2 sq. inches.
What is apothem?Apothem for a regular polygon is a line segment which originates from the center of the regular polygon and touches the mid of one of the sides of the regular polygon. It is perpendicular to the regular polygon's side it touches.
Regular polygons have all side same and that apothem bisects the side in two parts, (provable by symmetry).
Consider the diagram attached below.
The area of the regular hexagon considered = 6 times (area of triangle ABC) (because of symmetry).
Also, we have:
Area of triangle ABC = 2 times (Area of triangle ABD).
Thus, we get:
Area of the considered hexagon = 6×2×(Area of triangle ABD)
Area of the considered hexagon = 12×(Area of triangle ABD)
Perimeter of a closed figure = sum of its sides' lengths.
There are 6 equal sides in a regular hexagon (due to it being regular).
Thus, if each side is of 'a' inch length, then:
Perimeter = 6×a inches
[tex]101.8 = 6a\\\\\text{Dividing both the sides by 6, to get 'a' on one side}\\\\a = \dfrac{101.8}{6} \approx 16.967 \: \rm inches[/tex]
This is bisected by the apothem.
Thus, we get:
Length of the line segment BD = |BD| = a/2 ≈ 8.483 inches
Since it is given that the length of the apothem = |AD| = 14.7 inches, therefore, we get:
[tex]\text{Area of ABD} = \dfrac{1}{2} \times \rm base \times height \approx \dfrac{14.7 \times 8.483}{2} \approx 62.35 \: \rm in^2[/tex]
Thus, we get:
Area of the considered hexagon = 12×(Area of triangle ABD)
Area of the considered hexagon [tex]\approx 12 \times 62.35 = 748.2 \: \rm in^2[/tex]
Thus, the area of the considered regular hexagon which has got 14.7 inches of apothem and a perimeter of 101.8 inches is 748.2 sq. inches.
Learn more about apothem here:
https://brainly.com/question/12090932
#SPJ1
Answer:
748.23
Step-by-step explanation:
On edge
Make f the subject of 12k^2 = root (f+6)/2
Answer:
f=2×12k⁴-6
Step-by-step explanation:
root(f+6/2)=12k²
take the root away f+6/2=12k²
f+6/2=12k⁴
f=2×12k⁴-6
There are 7 seniors, 5 juniors and 4 sophomores on the pep squad. Ms. Williams needs to choose 12 students out of the group to sell spirit buttons during lunch. How many ways can the 12 students be chosen?
The question is an illustration of combination, and there are 1820 ways to select the 12 students
How to determine the number of selection?The distribution of the students is given as:
Senior = 7
Junior = 5
Sophomore = 4
The total number of students is:
Total = 7 + 5 + 4
Evaluate
Total = 16
To select 12 students from the 16 students, we make use of the following combination formula
Ways = 16C12
Evaluate the expression using a calculator
Ways = 1820
Hence, there are 1820 ways to select the 12 students
Read more about combination at:
https://brainly.com/question/11732255
#SPJ1
What is equivalent to 3 gallons?
f 4 quarts
g 6 quarts
h 3 quarts
j 12 quarts
Answer:
6g quarts
Step-by-step explanation:
three is a factor and multiple of 6
An airplane is flying 4,000 feet above the ground. It is approaching the runway. A person is standing on the runway looking up at the plane. If the angle of elevation is 12 degrees
what is the distance of the plane from the runway, to the nearest tenth of a foot?
i am from afghanistan and you all gus
The trigonometric relation is solved and distance of the plane from the runway is D = 18,818.52 feet
What are trigonometric relations?Trigonometry is the study of the relationships between the angles and the lengths of the sides of triangles
The six trigonometric functions are sin , cos , tan , cosec , sec and cot
Let the angle be θ , such that
sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / adjacent
tan θ = sin θ / cos θ
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
Given data ,
An airplane is flying 4,000 feet above the ground
A person is standing on the runway looking up at the plane. And the angle of elevation is 12°
So , from the trigonometric relation , we get
tan 12° = 4000 / D
On simplifying , we get
D = 4000 / 0.21255656167
D = 18,818.52 feet
Hence , the distance is D = 18,818.52 feet
To learn more about trigonometric relations click :
https://brainly.com/question/14746686
#SPJ2
The following table represents the annual sales of a bakery for the last 7 years since the grand opening.
Year
1 2 3 4 5 6 7
Sales (in millions)
1 1.2 1.5 1.8 2 2.2 2.4
(a) Create a scatter plot using the data in the table.
(b) Which model type best fits the data?
(c) Use a graphing calculator or other technology to determine the regression model. Graph the model on the scatter plot and write the equation of the model on the plot. Round each term to the nearest ten-thousandth.
The scatter plot is given below. The linear model best fits the data and the equation of the linear model is y = 0.2667 + 0.7333.
What is the linear system?A Linear system is a system in which the degree of the variable in the equation is one. It may contain one, two, or more than two variables.
The following table represents the annual sales of a bakery for the last 7 years since the grand opening.
(a) Create a scatter plot using the data in the table. The table is given below.
[tex]\begin{matrix}\rm Year&1 &2 &3 &4 &5 &6 &7 \\\\\rm Sales (in millions)&1 &1.2 &1.5 &1.8 &2 &2.2 &2.4\end{matrix}[/tex]
(b) The linear model type best fits the data.
(c) Use a graphing calculator or other technology to determine the regression model. Graph the model on the scatter plot and write the equation of the model on the plot. Then the equation will be
[tex]\rm y=\left(\dfrac{2.4-1}{7-1}\right)\left(x-1\right) + 1\\\\y = 0.2667 (x - 1) + 1\\\\y = 0.2667x - 0.7333[/tex]
The graph is given below.
More about the linear system link is given below.
https://brainly.com/question/20379472
#SPJ1
what is the value of x? x°-4 100° 3x°
Answer:
x = 21
Step-by-step explanation:
The sum of interiro angles in atriangle is equal to 180:
x - 4 + 100 + 3x = 180 add like terms
4x + 96 = 180 subtract 96 from both sides
4x = 84 divide both sides by 4
x = 21
Answer:
The answer is x = 21.
Step-by-step explanation:
Suppose that replacement times for washing machines are normally distributed with a mean of 9.4 years and a standard deviation of 2 years. Find the replacement time that separates the top 18% from the bottom 82%.
Using the normal distribution, it is found that the replacement time that separates the top 18% from the bottom 82% is of 11.23 years.
Normal Probability DistributionThe z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score measures how many standard deviations the measure is above or below the mean. Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.In this problem, the mean and the standard deviation are, respectively, given by [tex]\mu = 9.4, \sigma = 2[/tex].
The desired value is the 82nd percentile, which is X when Z = 0.915, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.915 = \frac{X - 9.4}{2}[/tex]
X - 9.4 = 0.915(2)
X = 11.23
The replacement time that separates the top 18% from the bottom 82% is of 11.23 years.
More can be learned about the normal distribution at https://brainly.com/question/24663213
A triangle has side lengths of (7x - 4) centimeters, (x + 3) centimeters, and
-
(3y + 2) centimeters. Which expression represents the perimeter, in centimeters, of
the triangle?
Answer:
Step-by-step explanation:
Formula
P = s1 + s2 + s3
Givens
s1 = 7x - 4
s2 = x + 3
s3 = 3y + 2
Solution
P = 7x - 4 + x+3 + 3y + 2
P = 8x + 3y + 3 + 2 - 4
Answer
P = 8x + 3y + 1
Note: I can't read the choices well enough to tell which answer it is. To me, it looks like A