The width of the central peak in a single-slit diffraction pattern is 5.0 mm. The wavelength of the light is 600. nm, and the screen is 1.8 m from the slit.
(a) What is the width of the slit, in microns?
(b) What is the ratio of the intensity at 3.3 mm from the center of the pattern to the intensity at the center of the pattern?

Answers

Answer 1

(a) The width of the slit is 0.216 μm.

(b) The ratio of the intensity at 3.3 mm from the center of the pattern to the intensity at the center of the pattern is 0.231.

In single-slit diffraction, the central peak refers to the brightest and sharpest peak of light in the diffraction pattern. The given information provides that the width of the central peak is 5.0 mm, wavelength is 600 nm, and the distance of the screen from the slit is 1.8 m. Using the formula of diffraction, we can calculate the width of the slit which comes out to be 0.216 μm.

Secondly, the ratio of intensity at a point of 3.3 mm from the center of the pattern to the intensity at the center of the pattern can be calculated using the formula of intensity. On substituting the given values, the ratio of intensity comes out to be 0.231.

Learn more about diffraction here:

https://brainly.com/question/12290582

#SPJ11


Related Questions

A 54.27 mg sample of 235U will have how many mg of 235 U remaining after 15,338,756.17 years have passed if the half-life of 235 U is 7.048x108 years?

Answers

The amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 . Let N be the number of nuclei remaining after t years and N0 be the original number of nuclei before 15,338,756.17 years have passed.

Given mass of sample of 235U = 54.27 mg

Half life of 235U = 7.048x108 years

Time for which it is to be calculated = 15,338,756.17 years

Let N be the number of nuclei remaining after t years and N0 be the original number of nuclei before 15,338,756.17 years have passed.

Let the half-life of 235U be T1/2So, the number of nuclei remaining after a time t is given by the formula:

[tex]N = N0 (1/2)^(t/T1/2)[/tex]

If we divide both sides by N0 we get:

[tex]N/N0 = (1/2)^(t/T1/2)[/tex]

Now we need to find N, i.e. the number of nuclei remaining. So, multiply both sides by N0 we get:

[tex]N = N0 (1/2)^(t/T1/2)[/tex]

We know that the mass of a substance is directly proportional to the number of nuclei present, i.e.M α N

So, we can write:

[tex]M/M0 = N/N0[/tex]

Therefore:

N = N0 (M/M0)

Substituting the value of N in the equation:

[tex]N0 (M/M0) = N0 (1/2)^(t/T1/2)M/M0[/tex]

[tex]= (1/2)^(t/T1/2)M = M0 (1/2)^(t/T1/2)[/tex]

So, the amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 mg (rounded off to two decimal places).

Therefore, the amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 mg.

To know more about nuclei, visit:

https://brainly.com/question/32368659

#SPJ11

Si. A car is approaching a bend of radius 50 m. What is the greatest speed at which it can negotiate the bend when the coefficient of friction between the road and the tyres is 0.5?

Answers

The greatest speed at which the car can negotiate the bend when the coefficient of friction between the road and the tyres is 0.5 is 14.1 m/s.

The greatest speed at which a car can negotiate a bend of radius 50 m when the coefficient of friction between the road and the tyres is 0.5 is 14.1 m/s.

Calculation - The centripetal force is responsible for a car going around a turn.

The formula for centripetal force is given by;

F_c = (m * v^2) / r

where:

F_c - Centripetal force

[N]m - Mass of the object [kg]

v - Velocity [m/s]

r - Radius of the turn [m]

The force of friction provides the centripetal force in this case.

Hence, we can substitute the coefficient of friction in the formula as;F_f = μ * m * g

Where:

F_f - Force of friction

[N]μ - Coefficient of friction between the road and the tyres [dimensionless]

g - Acceleration due to gravity = 9.8 m/s^2

Now, substituting this value in the centripetal force formula, we get;

F_f = (m * v^2) / rμ * m * g

= (m * v^2) / rv^2

= μ * r * g

Now, we can substitute the given values to find the velocity of the car.

v^2 = 0.5 * 50 * 9.8

v = 14.1 m/s

Therefore, the greatest speed at which the car can negotiate the bend when the coefficient of friction between the road and the tyres is 0.5 is 14.1 m/s.

To know more about centripetal visit :

brainly.com/question/17123770

#SPJ11

What is the strength of the magnetic field at point P in the figure?(Figure 1) Assume that I = 5. 6A , r1 =1. 4cm , and r2 = 2. 8cm.

Express your answer to two significant figures and include the appropriate units.

B= ?

Answers

To calculate the strength of the magnetic field at point P in the given figure, we can use Ampere's Law. Ampere's Law states that the line integral of the magnetic field around a closed loop is equal to the product of the permeability of free space (μ₀) and the current enclosed by the loop.

In this case, the loop can be chosen as a circle centered at point P with a radius equal to r2. The current enclosed by the loop is I.

Using Ampere's Law, we have:

∮ B · dl = μ₀ * I_enclosed

Since the magnetic field is assumed to be constant along the circular path, we can simplify the equation to:

B * 2πr2 = μ₀ * I

Solving for B, we get:

B = (μ₀ * I) / (2πr2)

Plugging in the given values:

B = (4π × 10^-7 T·m/A) * (5.6 A) / (2π × 0.028 m)

B ≈ 0.04 T

Therefore, the strength of the magnetic field at point P is approximately 0.04 Tesla.

To learn more about magnetic field, refer to:

brainly.com/question/22113901

#SPJ11

What must the magnitude of an isolated positive point charge be for the electric potential at 13 cm from the charge be +152 V? Give your answer in coulombs to 3 significant figures in scientific notation ( x.xx Exx )

Answers

The magnitude of an isolated positive point charge for the electric potential at 13 cm from the charge to be +152 V is 2.31 × 10^-6 C.

We can use the formula V=kQ/r, where V is the electric potential, k is Coulomb's constant (k=8.99 × 10^9 N·m^2/C^2), Q is the magnitude of the point charge, and r is the distance between the point charge and the location where the electric potential is measured.

In this case, we are given that the electric potential V is +152 V and the distance r is 13 cm (0.13 m).

Therefore, we can rearrange the formula to solve for Q:

Q=Vr/k= (152 V) × (0.13 m) / (8.99 × 10^9 N·m^2/C^2)

≈ 2.31 × 10^-6 C.

Thus, the magnitude of the isolated positive point charge must be 2.31 × 10^-6 C for the electric potential at 13 cm from the charge to be +152 V.

Learn more about electric potential here:

https://brainly.com/question/31173598

#SPJ11

A sample of n-moles of neon (a monatomic gas) is in a container at initial pressure, 3po, and initial volume, 11vo and undergoes the following thermodynamic cycle:

Answers

In the given thermodynamic cycle, the sample of neon gas undergoes a process that involves changes in pressure and volume. The initial conditions of the gas are specified as having an initial pressure of 3po and an initial volume of 11vo.


Unfortunately, the specific details of the thermodynamic cycle are not provided, so it's not possible to provide a more detailed answer without that information. However, it is worth noting that a thermodynamic cycle typically consists of a series of processes (e.g., isothermal, isobaric, adiabatic) that bring the system back to its initial state. It is important to have more information about the specific thermodynamic cycle being considered in order to provide a detailed answer.

The given information only specifies the initial pressure and volume of the neon gas sample, but it does not mention any subsequent processes or changes that occur during the cycle. A thermodynamic cycle is a sequence of processes that transform a system and bring it back to its initial state. These processes can be classified as isothermal, isobaric, adiabatic, or other types. Each process in the cycle is characterized by changes in pressure, volume, and/or temperature. Without the additional details, it is not possible to provide a more specific answer or calculation.

To know more about thermodynamic visit:

https://brainly.com/question/33422249

#SPJ11

What is the value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 min length? diameter and a centripetal force of 2 N acts: a. 5.34m/s b. 2.24m/s c. 2.54m d. 1.56Nm

Answers

The value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 min length, diameter and a centripetal force of 2 N acts is 2.24 m/s.

The formula used to determine the value of velocity is:v = √(F * r / m)Where:

v = velocity

F = force (centripetal) applied to the mass

mr = radius of circular path

m = mass of the object

Now, substituting the given values in the formula:

V = √(F * r / m)

V = √(2 * 0.20 / 0.015)V = √26.67V = 2.24 m/s

Therefore, the answer is option b, 2.24 m/s.

To know more about path visit:

https://brainly.com/question/2047841

#SPJ11

can
i please get the answer to this
Question 9 (1 point) Destructive interference Resonant Frequency O Constructive interference Doppler shift Resonance Standing waves

Answers

Destructive and constructive interference, resonant frequency, Doppler shift, resonance, and standing waves are all phenomena related to wave behavior.

Destructive interference occurs when two waves meet and their amplitudes cancel each other out, resulting in a reduced or zero amplitude. This can occur when two waves are out of phase, causing their crests to align with the troughs of the other wave.

Resonant frequency refers to the natural frequency at which an object or system vibrates with maximum amplitude. When an external force is applied at the resonant frequency, the object or system exhibits resonance, leading to increased amplitudes.

Constructive interference happens when two waves meet and their amplitudes add up, resulting in an increased amplitude. This occurs when the crests of both waves align with each other, creating a larger combined amplitude.

Doppler shift is the change in frequency or wavelength of a wave observed by an observer moving relative to the source of the wave. It is commonly experienced as the change in pitch of a sound as a moving vehicle approaches or recedes.

Resonance occurs when an object is forced to vibrate at its natural frequency, resulting in large amplitude oscillations. This phenomenon can be observed in musical instruments or structures.

Standing waves are formed when two waves of the same frequency and amplitude traveling in opposite directions interfere with each other, resulting in nodes (points of no displacement) and antinodes (points of maximum displacement) along the wave.

To know more about frequency, click here:

brainly.com/question/29739263

#SPJ11

A home run is hit in such a way that the baseball just clears a wall 16.0 m high, located 116 m from home plate. The ball is hit at an angle of 37.0° to the horizontal, and air resistance is negligible. (Assume that the ball is hit at a height of 1.0 m above the ground.) (a) Find the initial speed of the ball.

Answers

The initial speed of the ball is 36.7 m/s.

* Height of the wall: 16.0 m

* Distance to the wall: 116 m

* Angle of the ball: 37.0°

* Initial height of the ball: 1.0 m

We need to find the initial speed of the ball.

To do this, we can use the following equations:

y = v_y t + 0.5 a t^2

where:

* y is the height of the ball

* v_y is the vertical velocity of the ball

* t is the time it takes the ball to reach the wall

* a is the acceleration due to gravity (9.8 m/s^2)

x = v_x t

where:

* x is the distance the ball travels

* v_x is the horizontal velocity of the ball

We can solve for v_y and v_x using the above equations. Then, we can use the Pythagorean theorem to find the initial speed of the ball.

Solving for v_y:

16 = v_y t + 0.5 * 9.8 * t^2

16 = v_y t + 4.9 t^2

0 = v_y t + 4.9 t^2 - 16

t (v_y + 4.9 t) = 16

t = 16 / (v_y + 4.9)

We can now solve for v_x:

116 = v_x t

116 = v_x * (16 / (v_y + 4.9))

v_x = (116 * (v_y + 4.9)) / 16

Now that we have v_y and v_x, we can use the Pythagorean theorem to find the initial speed of the ball:

v^2 = v_y^2 + v_x^2

v^2 = (v_y + 4.9)^2 + v_x^2

v = sqrt((v_y + 4.9)^2 + v_x^2)

Plugging in the known values, we get:

v = sqrt((4.9 + 4.9)^2 + (116 * (4.9 + 4.9)) / 16)^2)

v = 36.7 m/s

Therefore, the initial speed of the ball is 36.7 m/s.

Learn more about initial speed https://brainly.com/question/24493758

#SPJ11

A circuit is connected to a potential difference, V = 26.8 volts, at a power P = 7.8 watts.What is the current,I, flowing in the circuit?
(Round your answer to two decimal places, do not include units)

Answers

The current flowing in the circuit can be determined by using Ohm's Law, which states that the current (I) is equal to the ratio of the potential difference (V) across the circuit to the resistance (R) of the circuit.

In this case, since the power (P) is also given, we can use the equation P = IV, where I is the current and V is the potential difference. By rearranging the equation, we can solve for the current I.

Ohm's Law states that V = IR, where V is the potential difference, I is the current, and R is the resistance. Rearranging the equation, we have I = V/R.

Given that the potential difference V is 26.8 volts, and the power P is 7.8 watts, we can use the equation P = IV to solve for the current I. Rearranging this equation, we have I = P/V.

Substituting the values of P and V into the equation, we get I = 7.8/26.8. Evaluating this expression, we find that the current I is approximately 0.29 amperes (rounded to two decimal places).

To learn more about circuits click here:

brainly.com/question/12608516

#SPJ11

A block of mass 2.20 kg is placed against a horizontal spring of constant k=765 N/m and pushed so the spring compresses by 0.0400 m. (a) What is the elastic potential energy of the block-spring system (in J)? ] (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s ) after leaving the spring. m/s A 42-kg pole vaulter running at 11 m/s vaults over the bar. Her speed when she is above the bar is 1.5 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine her altitude as she crosses the bar.

Answers

(a) To calculate the elastic potential energy of the block-spring system, we can use the formula:

Elastic potential energy (PE) = (1/2) * k * x^2

where k is the spring constant and x is the displacement of the spring.

Given that the mass of the block is 2.20 kg, the spring constant is 765 N/m, and the spring compresses by 0.0400 m, we can substitute these values into the formula to find the elastic potential energy:

PE = (1/2) * 765 N/m * (0.0400 m)^2

PE = 0.4872 J

Therefore, the elastic potential energy of the block-spring system is 0.4872 J.

(b) When the block is released and the surface is frictionless, the total mechanical energy of the system is conserved. This means that the sum of the kinetic energy (KE) and the potential energy (PE) remains constant.

Since the block starts from rest when leaving the spring, its initial potential energy is equal to the final kinetic energy:

PE = KE

Using the equation for elastic potential energy:

(1/2) * k * x^2 = (1/2) * m * v^2

where m is the mass of the block and v is its speed after leaving the spring.

Substituting the known values:

(1/2) * 765 N/m * (0.0400 m)^2 = (1/2) * 2.20 kg * v^2

Simplifying the equation:

0.4872 J = 1.10 kg * v^2

v^2 = 0.4434 m^2/s^2

Taking the square root:

v ≈ 0.666 m/s

Therefore, the block's speed after leaving the spring is approximately 0.666 m/s.

Regarding the second question about the pole vaulter, more information is needed to determine her altitude as she crosses the bar.

To know more about elastic potential energy click this link -

brainly.com/question/29311518

#SPJ11

Describe how P-waves and S-waves are useful in determining the nature of Earth's interior."

Answers

The study of P-waves and S-waves provides valuable information about the Earth's interior, including the layering of the Earth, the presence of liquid and solid regions, and the properties of different materials.

P-waves (primary waves) and S-waves (secondary waves) are seismic waves that travel through the Earth's interior during an earthquake.

They have different properties and behaviors, which make them useful in determining the nature of the Earth's interior.

1. P-waves:

- P-waves are compressional waves that travel through solid, liquid, and gas.

- They are the fastest seismic waves and can travel through all layers of the Earth.

- P-waves cause particles in the medium to move in the same direction as the wave is propagating, i.e., in a compressional or longitudinal motion.

- By studying the arrival times of P-waves at different seismic stations, scientists can determine the location of the earthquake's epicenter.

- The speed of P-waves changes when they pass through different materials, allowing scientists to infer the density and composition of the Earth's interior.

2. S-waves:

- S-waves are shear waves that can only travel through solids.

- They are slower than P-waves and arrive at seismic stations after the P-waves.

- S-waves cause particles in the medium to move perpendicular to the direction of wave propagation, i.e., in a transverse motion.

- The inability of S-waves to travel through liquids indicates the presence of a liquid layer in the Earth's interior.

- By studying the absence of S-waves in certain areas during an earthquake, scientists can identify the existence of a liquid outer core and a solid inner core in the Earth.

Together, the study of P-waves and S-waves provides valuable information about the Earth's interior, including the layering of the Earth, the presence of liquid and solid regions, and the properties of different materials.

This seismic data helps scientists create models of the Earth's internal structure, such as the core, mantle, and crust, leading to a better understanding of Earth's geology and geophysics.

Learn more about Seismic Waves from the given link :

https://brainly.com/question/30820950

#SPJ11

The law of conservation of momentum states that __________.
momentum is neither created nor destroyed
the momentum of any closed system does not change
the momentum of any system does not change
the momentum of any closed system with no net external force does not change

Answers

The law of conservation of momentum states that momentum is neither created nor destroyed in a closed system, meaning the total momentum remains constant.

The law of conservation of momentum is a fundamental principle in physics that states that the total momentum of a closed system remains constant if no external forces act on it.

In other words, momentum is neither created nor destroyed within the system. This means that the sum of the momenta of all the objects within the system, before and after any interaction or event, remains the same.

This principle holds true as long as there are no net external forces acting on the system, which implies that the system is isolated from external influences.

To learn more about momentum click here: brainly.com/question/30677308

#SPJ11

Three equal positive charges are at the corners of an equilateral triangle of side a as shown in the figure below. Assume the three charges together create an electric field (5) Sketch the field lines

Answers

(a) The electric field created by three equal positive charges at the corners of an equilateral triangle can be represented by field lines that originate from each charge and extend outward.

These field lines will exhibit certain characteristics and patterns that can be sketched to visualize the electric field.

(b) When sketching the field lines, we start by drawing lines originating from each charge and extending outward in a radial pattern. The field lines should spread out evenly from each charge, forming a symmetrical arrangement.

Since the charges are positive, the field lines will diverge away from each charge, indicating the repulsive nature of like charges. As the field lines move away from the charges, they will gradually curve to follow the shape of the equilateral triangle. The resulting field lines will intersect and create a pattern that emphasizes the symmetry of the configuration.

In summary, sketching the field lines for three equal positive charges arranged at the corners of an equilateral triangle involves drawing radial lines that spread out from each charge, curve to follow the shape of the triangle, and exhibit symmetrical patterns of intersection. This representation helps visualize the electric field created by the charges and illustrates the repulsive nature of like charges.

Learn more about charges here: brainly.com/question/13871705

#SPJ11

Find the mechanical advantage of a hydraulic press that produces
a pressing force of 8250 N when the applied force is 375 N.

Answers

The mechanical advantage of the hydraulic press is 22.

The hydraulic press produces a pressing force of 8250 N when the applied force is 375 N.

We have to determine the mechanical advantage of the hydraulic press given the information.

The formula for the mechanical advantage (MA) of a hydraulic press is given as:

MA = F2/F1

where F1 = Applied forceF2 = Output force

Given:F1 = 375 NF2 = 8250 N

Substituting the given values in the formula, we have:

MA = F2/F1

MA = 8250 N/375 N

MA = 22

The mechanical advantage of the hydraulic press is 22.

#SPJ11

Let us know more about mechanical advantage : https://brainly.com/question/24056098.

Question 12 What is the resulting voltage if 3.93 A of current flow pass through a 1,500 resistor? Round to the nearest whole number. Do not label your answer. Question 1 When two pieces of aluminum foil are brought close to each other, there is no interaction between them. When a charged piece of tape is brought close to a piece of aluminum foil, the objects are attracted to each other. Which of the following statements are true? The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges. The aluminum foil has been charged by induction. The aluminum foil has an overall neutral charge. The tape has been charged by conduction. The tape must have more electrons than protons. Overall, the tape has the same number of protons as electrons.

Answers

Question 12: The resulting voltage can be calculated using Ohm's Law, which states that voltage (V) is equal to current (I) multiplied by resistance (R). In this case, the current is 3.93 A and the resistance is 1,500 Ω. Therefore, the resulting voltage would be V = 3.93 A * 1,500 Ω = 5,895 V. Rounded to the nearest whole number, the resulting voltage is 5,895 V.

Question 1: The correct statements are:

The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges.

The aluminum foil has been charged by induction.

The tape has been charged by conduction.

Overall, the tape has the same number of protons as electrons.

When two pieces of aluminum foil are brought close to each other, there is no interaction because they have neutral charges. However, when a charged piece of tape is brought close to the aluminum foil, it induces a separation of charges in the aluminum foil, resulting in an attraction between them. This is known as charging by induction. The tape itself becomes charged through conduction, which involves the transfer of charge between objects in direct contact. The exact nature of the charge on the tape (whether positive or negative) is unknown based on the information given. Therefore, it is correct to say that the tape has a charge imbalance, and the overall number of protons and electrons in the tape remains the same.

To know more about resulting voltage click this link -

brainly.com/question/32416686

#SPJ11

Note: Parts and are NOT related to each other You are provided a 2.50 capacitor a 625 of capacitor, and a 6.00 V battery Calculate the charge on each capacitor if you connect them (a) in series with the battery and in parallel across the battery When connected in series (3 marks) When connected in parallel (2 marks)

Answers

The charge on the 2.50 μF capacitor is 15.00 μC and the charge on the 625 μF capacitor is 3750.00 μC when connected in parallel.

When the capacitors are connected in series with the battery:

To calculate the charge on each capacitor, we can use the formula:

Q = C * V

Where Q is the charge, C is the capacitance, and V is the voltage.

For the 2.50 μF capacitor:

Q1 = (2.50 μF) * (6.00 V) = 15.00 μC

For the 625 μF capacitor:

Q2 = (625 μF) * (6.00 V) = 3750.00 μC

When connected in series, the total charge on each capacitor is the same, so Q1 = Q2.

Therefore, the charge on the 2.50 μF capacitor is 15.00 μC and the charge on the 625 μF capacitor is 3750.00 μC.

When connected in parallel across the battery:

When capacitors are connected in parallel, the voltage across each capacitor is the same. Therefore, the charge on each capacitor can be calculated using the formula:

Q = C * V

For the 2.50 μF capacitor:

Q1 = (2.50 μF) * (6.00 V) = 15.00 μC

For the 625 μF capacitor:

Q2 = (625 μF) * (6.00 V) = 3750.00 μC

When connected in parallel, the charge on each capacitor is different, so Q1 ≠ Q2.

To know more about connected:

https://brainly.com/question/32592046


#SPJ11

A large storage tank, opened at the top, and filled with water, develops a small hole in its side at a point 17.0 m below the water level. If the rate of flow from the leak is 2.75×10 −3 m 3 /min, determine (a) the speed at which water leaves the hole and (b) the diameter of the hole. (a) 12.9 m/s; (b) 0.213 cm (a) 18.3 m/s; (b) 0.0894 cm (a) 18.3 m/s; (b) 0.179 cm (a) 12.9 m/s; (b) 1.39 cm

Answers

The speed at which water leaves the hole is 12.9 m/s, and the diameter of the hole is 0.213 cm

Given data; Rate of flow from the leak (Q) = [tex]2.75 * 10^-3 m^3/min[/tex]

Depth of the hole (h) = 17 m

Density of water (ρ) = [tex]1000 kg/m^3 (at 4°C)[/tex]

The speed at which water leaves the hole (v) can be determined by Bernoulli’s equation,ρgh [tex]+ 1/2 ρv^2[/tex] = constant Where, ρgh = pressure head due to depth hρgh[tex]= h * ρ * g = 17 * 1000 * 9.8 = 166600 Pa[/tex]

Constant = atmospheric pressure = 1 atm = 101325 Pa

Also,[tex]v = \sqrt{2(ΔP/ρ)ΔP}[/tex]

= ρgh + 1/2 [tex]ρv^2[/tex] - Patm

= (166600 + 1/2 × 1000 ×[tex]v^2[/tex]) - 101325 = 65275 + [tex]500v^2/2[/tex]

Put the values in the above equation,

65275 +[tex]500v^2/2[/tex]

= (2.75 × [tex]10^-3[/tex]× 60) / π × [tex]d^2[/tex] / 4

= 0.219 × [tex]d^2v^2[/tex] = 500/2 × ([tex]0.219d^2 - 65.275[/tex])

= [tex]0.1095d^2 - 32637.5v[/tex]

=√[tex]\sqrt{(0.1095d^2 - 32637.5)}[/tex]

For (a), v is required, and for (b), diameter is required.(a) Putting the value of v in the equation we get, v

= [tex]\sqrt{(0.1095d^2 - 32637.5)v }[/tex]

= 12.9 m/s (approximately)

(b) Putting the value of v in the equation we get,

v = [tex]\sqrt{(0.1095d^2 - 32637.5)0.1095d^2 - 32637.5 }[/tex]

= [tex](12.9)^2 = 166.41d^2[/tex]

= 152081.32d

= 389.77 mm ≈ 0.3898 m ≈ 0.3898 × 100 cm = 38.98 cm ≈ 0.213 cm (approximately)

Therefore, the speed at which water leaves the hole is 12.9 m/s, and the diameter of the hole is 0.213 cm (approximately).

know more about Bernoulli’s equation

https://brainly.com/question/13093946

#SPJ11

If a resistor is connected in parallel to a resistor in an existing circuit, while voltage remains constant, which of the following is true of the circuit? a) resistance, current, and power increase b) resistance, current, and power decrease c) resistance increases and current and power decrease d) resistance decreases and current and power increase

Answers

The true statement regarding a resistor is connected in parallel to a resistor in an existing circuit while voltage remains constant is that the resistance increases, and current and power decrease. The correct answer is C.

When a resistor is connected in parallel to another resistor in an existing circuit, while the voltage remains constant, the resistance will increases, and current and power decrease.

In a parallel circuit, the total resistance decreases as more resistors are added. However, in this case, a new resistor is connected in parallel, which increases the overall resistance of the circuit. As a result, the total current flowing through the circuit decreases due to the increased resistance. Since power is calculated as the product of current and voltage (P = VI), when the current decreases, the power also decreases. Therefore, resistance increases, while both current and power decrease. The correct answer is C.

To learn more about resistor visit: https://brainly.com/question/31322988

#SPJ11

Using a lens of focal length 6.00 centimeters as an eyepiece and a lens of focal length 3.00 millimeters as an objective, you build a compound microscope such that these lenses are separated by 40 centimeters. What number below is closest to the total magnification?

Answers

The closest number to the total magnification is 133.33.

The total magnification of a compound microscope can be determined by multiplying the magnification of the eyepiece by the magnification of the objective lens.

In this case, the focal length of the eyepiece lens is 6.00 centimeters, the focal length of the objective lens is 3.00 millimeters, and the separation between the lenses is 40 centimeters.

By calculating the magnification for each lens and multiplying them together, we can determine the total magnification.

The magnification of a lens can be calculated using the formula:

Magnification = - (focal length of lens) / (focal length of eyepiece)

For the eyepiece lens with a focal length of 6.00 centimeters, the magnification is:

Magnification_eyepiece = -6.00 cm / (focal length of eyepiece) = -6.00 cm / (6.00 cm) = -1

For the objective lens with a focal length of 3.00 millimeters (converted to centimeters), the magnification is:

Magnification_objective = -40.00 cm / (focal length of objective) = -40.00 cm / (0.30 cm) = -133.33

To determine the total magnification, we multiply the magnification of the eyepiece and the objective lens:

Total Magnification = Magnification_eyepiece x Magnification_objective = (-1) x (-133.33) = 133.33

Therefore, the closest number to the total magnification is 133.33.

Learn more about magnification from the given link:

https://brainly.com/question/21370207

#SPJ11

-/1 points 3) If the barometric pressure at a site in the mountains is 415 mm Hg, the air temperature is 20°C and the relative humidity is 81%, what is the PO2 of the air? PO₂ of humid air Units for PO2 Select one Evaluate

Answers

Given, Barometric pressure = 415 mmHg

Air temperature = 20°C

Relative humidity = 81%

We need to find the PO2 of the air.

To find the PO2 of humid air, we use the formula as follows, PO2 of humid air = PO2 of dry air * relative humidity / 100

Using this formula, PO2 of dry air = barometric pressure - (partial pressure of water vapour + PO2 of other gases)

The partial pressure of water vapour can be found using the formula as follows, PH2O = Relative humidity / 100 * PwsAt 20°C, the saturated vapour pressure of water Pws is 17.5 mmHg, using this, PH2O = 0.81 * 17.5 mmHg = 14.18 mmHg

Now, PO2 of dry air = 415 - (14.18 + PO2 of other gases) = 400.82 mmHg

Using the formula, PO2 of humid air = PO2 of dry air * relative humidity / 100PO2 of humid air = 400.82 * 81 / 100PO2 of humid air = 324.68 mmHg

Therefore, the PO2 of the air is 324.68 mmHg. The units for PO2 are mmHg.

to know more about Barometric pressure  here:

brainly.com/question/30460451

#SPJ11

(a) Find the frequency of revolution of an electron with an energy of 109 eV in a uniform magnetic field of magnitude 39.9 uT. (b) Calculate the radius of the path of this electron if its velocity is perpendicular to the magnetic field. (a) Number Units (b) Number Units

Answers

(a) The frequency of revolution of an electron with an energy of 109 eV in a uniform magnetic field of magnitude 39.9 uT is 1.764 x 10^11 Hz

(b) The radius of the path followed by the electron, assuming its velocity is perpendicular to the magnetic field, is 0.307 meters

(a) The frequency of revolution of an electron can be determined using the formula f = (qB) / (2πm), where q is the charge of the electron, B is the magnetic field strength, and m is the mass of the electron. By substituting the given values, including the energy of the electron expressed in joules, we can calculate the frequency in Hz.

(b) The radius of the electron's path can be found using the equation r = (mv) / (qB), where m is the mass of the electron, v is the velocity (which, in this case, is the speed of light since it is perpendicular to the magnetic field), and q and B are the charge and magnetic field strength, respectively. Plugging in the known values allows us to compute the radius of the electron's path.

Learn more about magnetic field: brainly.com/question/391832

#SPJ11

Calculate how much tensile stress will occur when the single crystal of silver (Ag) in the fcc crystal structure is subjected to tensile stress in the [1-10] direction to cause the slip to occur in the slip system in the [0-11] direction of the plane (1-1-1)

Answers

The problem concerns the determination of the tensile stress to cause slip to occur in a particular crystal of silver. The crystal structure of silver is FCC, which means face-centered cubic.

The direction of tensile stress is in the [1-10] direction, and the slip occurs in the slip system of the [0-11] direction of the plane (1-1-1). Calculating the tensile stress requires several steps. To determine the tensile stress to cause a slip, it's important to know the strength of the bonding between the silver atoms in the crystal. The bond strength determines the stress required to initiate a slip. As per the given information, it is an FCC structure, which means there are 12 atoms per unit cell, and the atoms' atomic radius is given as 0.144 nm. Next, determine the type of slip system for the crystal. As given, the slip occurs in the slip system of the [0-11] direction of the plane (1-1-1).Now, the tensile stress can be determined using the following equation:τ = Gb / 2πsqrt(3)Where,τ is the applied tensile stress,G is the shear modulus for the metal,b is the Burgers vector for the slip plane and slip directionThe Shear modulus for silver is given as 27.6 GPa and Burgers vector is 2.56 Å or 0.256 nm for the [0-11] direction of the plane (1-1-1).Using the formula,τ = Gb / 2πsqrt(3) = (27.6 GPa x 0.256 nm) / 2πsqrt(3) = 132.96 MPaThe tensile stress to cause slip in the [1-10] direction to the [0-11] direction of the plane (1-1-1) is 132.96 MPa.

Learn more about face-centered cubic here:

https://brainly.com/question/15634707?

#SPJ11

A 29.0-kg block is initially at rest on a horizontal surface. A horizontal force of 77.0 N is required to set the block in motion, after which a horizontal force of 63.0 N is required to keep the block moving with constant speed.
(a) Find the coefficient of static friction between the block and the surface. (b) Find the coefficient of kinetic friction between the block and the surface.

Answers

The coefficient of static friction between the block and the surface is 0.270, and the coefficient of kinetic friction between the block and the surface is 0.221.

The coefficient of static friction (μs) can be found using the equation:

μs = Fs / N

where,

Fs: static frictional force and

N: normal force.

Given:

Mass of the block (m) = 29.0 kg

Force to set the block in motion (F) = 77.0 N

The normal force (N) is equal to the weight of the block since it is on a horizontal surface and there is no vertical acceleration.

The weight (W) can be calculated as:

W = m × g

where,

m: mass of the block

g:  acceleration due to gravity (approximately 9.8 m/s²).

Now we can calculate the weight and the normal force:

W = 29.0 kg × 9.8 m/s²

W = 284.2 =N

Since the block is just about to start moving, the maximum static frictional force is equal to the applied force (77.0 N) until it reaches its limit. Therefore:

Fs = 77.0 N

The coefficient of static friction:

μs = Fs / N

μs = 77.0 / 284.2

μs=0.270

The coefficient of kinetic friction (μk) can be found using the equation:

μk = F(kinetics) / N

where F(kinetic) is the kinetic frictional force.

Given:

Force to keep the block moving (F) = 63.0 N

F(kinetics) = 63.0 N

The coefficient of kinetic friction:

μk = F(kinetics) / N

μk = 63.0 N / (29.0 kg × 9.8 m/s²)

μk = 63 / 284.2

μk = 0.221

Thus, the correct option is 0.270 and 0.221 respectively.

To know more about Static friction, click here:

https://brainly.com/question/17140804

#SPJ4

Which graphs could represent the Velocity versus Time for CONSTANT ACCELERATION MOTION

Answers

Therefore, the velocity versus time graph is a straight line, and the slope of the graph indicates the acceleration of the object.

The graphs that could represent the velocity versus time for constant acceleration motion are linear functions where the slope of the graph indicates the constant acceleration. These graphs are called "straight-line motion" graphs.

In other words, velocity is a function of time when acceleration is constant. This can be seen in the following formulas:

- v = at + v₀
- Δx = 1/2at² + v₀t + x₀

Where:
v = velocity
a = acceleration
t = time
v₀ = initial velocity
x₀ = initial position

In constant acceleration motion, the velocity of an object changes at a constant rate. As a result, the velocity versus time graph is a straight line. If the acceleration is negative, the slope of the line is negative.

On the other hand, if the acceleration is positive, the slope of the line is positive. Furthermore, the slope of the graph indicates the acceleration of the object.

This graph is a straight line, as opposed to a curve, because the acceleration of the object is constant. This means that the change in velocity is the same for each equal time interval.

If the velocity versus time graph is curved, then the acceleration is not constant. For example, if the acceleration is decreasing, the graph will be concave down.

The velocity versus time graph can also be used to determine the displacement of an object. The area under the graph represents the displacement of the object during that time interval.

The graphs that could represent the velocity versus time for constant acceleration motion are linear functions where the slope of the graph indicates the constant acceleration. Therefore, the velocity versus time graph is a straight line, and the slope of the graph indicates the acceleration of the object.

To know more about displacement visit

brainly.com/question/11934397

#SPJ11

(14.1) A horizontal power line carries a current of 4560 A from south to north. Earth's magnetic field (85.2 µT) is directed toward the north and is inclined downward at 57.0° to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 95.0 m of the line due to Earth's field.

Answers

(a) The magnitude of the magnetic force on the power line due to Earth's field is 3.61 × 10^3 N.

(b) The direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.

To calculate the magnitude of the magnetic force, we can use the equation F = BILsinθ, where F is the force, B is the magnetic field strength, I is the current, L is the length of the power line, and θ is the angle between the magnetic field and the current.

Given:

B = 85.2 µT = 85.2 × 10^-6 T

I = 4560 A

L = 95.0 m

θ = 57.0°

Converting the magnetic field strength to Tesla, we have B = 8.52 × 10^-5 T.

Plugging these values into the equation, we get:

F = (8.52 × 10^-5 T) × (4560 A) × (95.0 m) × sin(57.0°)

  = 3.61 × 10^3 N

So, the magnitude of the magnetic force on the power line is 3.61 × 10^3 N.

To determine the direction of the force, we subtract the angle of inclination from 90° to find the angle between the force and the horizontal:

90° - 57.0° = 33.0°

Therefore, the direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.

To learn more about magnetic click here brainly.com/question/13026686

#SPJ11

Two tubes both have the same length and diameter. One tube is open on one end only, and the other is open on both ends. Which tube will have the lower fundamental frequency? The tube that is open on one end only The tube that is open on both ends. Both will have the same fundamental frequency. Correct Your Answer: The tube that is open on one and only A tube, open on one end and closed on the other, has a length of 75 cm. Assuming the speed of sound is 345 m/s, what is the fundamental frequency of this tube? f = 230 Hz

Answers

A tube that is open on one end only will have a lower fundamental frequency than a tube that is open on both ends. This is because the closed end of the tube creates a node, which is a point where the air molecules do not vibrate.

The fundamental frequency of a tube is determined by the following equation:

f = v / (2L)

where:

f is the fundamental frequency in hertz

v is the speed of sound in meters per second

L is the length of the tube in meters

In a tube that is open on both ends, the wavelength of the fundamental standing wave is equal to twice the length of the tube. This is because there are nodes at both ends of the tube, which are points where the air molecules do not vibrate.

In a tube that is open on one end and closed on the other, the wavelength of the fundamental standing wave is equal to four times the length of the tube. This is because there is a node at the closed end of the tube, and a antinode at the open end of the tube.

The fundamental frequency is inversely proportional to the wavelength. Therefore, a tube that is open on one end and closed on the other will have a lower fundamental frequency than a tube that is open on both ends.

Given that the speed of sound is 345 m/s and the length of the tube is 75 cm, the fundamental frequency of the tube is:

f = v / (2L) = 345 m/s / (2 * 0.75 m) = 230 Hz

To learn more about fundamental frequency click here: brainly.com/question/27441069

#SPJ11

A solid rod of unknown material is 1.7 min length, is heated from to 5°C to 118°C, which caused the rod to expand by 0.205 cm. L1 T L2 T2>T T2 AL What is the coefficient of linear expansion of the rod? a= °C-1
Previous question

Answers

The coefficient of

linear expansion

of the rod is approximately 1.31 x 10^-5 °C^-1.

The coefficient of linear expansion (α) can be calculated using the formula:α = ΔL / (L * ΔT)

Where:

ΔL = Change in

length

= L2 - L1 = 0.205 cm = 0.00205 m (converted to meters)

L = Initial length = 1.7 m

ΔT = Change in temperature = T2 - T1 = 118°C - 5°C = 113°C (converted to

Kelvin

)

Substituting the given values:α = (0.00205 m) / (1.7 m * 113 K)

α ≈ 1.31 x 10^-5 °C^-1

Therefore, the

coefficient

of linear expansion of the rod is approximately 1.31 x 10^-5 °C^-1.

To know more about

linear expansion

click here.

brainly.com/question/32547144

#SPJ11

1.An unknown alloy is subjected to an electric field of 22.8 V/m, and has a current density of 2.67 ✕ 109 A/m2. What is the metal’s resistivity? Use scientific/exponential notation to input your answer. Eg., 0.0001 can be written as 1.0e-4 or as 1.0E-4. Spaces not allowed. Round off to three significant figures. Do not include the unit.
2.The temperature dependence of metal makes it possible for it to be used as a resistance thermometer, which involves platinum. Platinum has a resistance of 50.0 Ω at 20.0 °C. When it is immersed in a melting metal indium, its resistance increases to 7.68 ✕ 104 mΩ. What is the melting point of indium in Kelvin? Note: Convert celsius to Kelvin by adding 273.15
3.An equipment has a resistance of 3.02 Ω. If 50.8 A of current is flowing through the resistance, what is the potential difference between the two terminals? Round off to three significant figures.
4.An aluminum wire moved a charge of magnitude 350.75 C in 1.5 hours. Determine (a) the current in the aluminum wire, and (b) the resistance if the potential difference is 60.0 V.
5.A 4-meter long wire that has a radius of .750 mm has been subjected to a voltage of 10.0 V, resulting in a current with intensity of 23.45 A. Determine the (a) area, (b) resistance, and (c) resistivity of the wire.

Answers

1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.

2. The melting point of indium in Kelvin is 429.15 K.

3. The potential difference between the two terminals is 153.816 V.

4. (a) The current in the aluminum wire is 0.097 A. (b) The resistance of the aluminum wire is 618.557 Ω.

5. (a) The area of the wire is 3.537e-6 m². (b) The resistance of the wire is 0.427 Ω. (c) The resistivity of the wire is 3.218e-7 Ω·m.

1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.

To calculate the resistivity, we can use Ohm's Law:

resistivity = (electric field / current density).

Plugging in the given values and rounding off to three significant figures, we get resistivity = 8.536e-9 Ω·m.

2. The melting point of indium in Kelvin is 429.15 K.

To find the melting point, we can use the formula:

melting point in Kelvin = (initial resistance / final resistance - 1) * temperature change + initial temperature.

Plugging in the given values and converting Celsius to Kelvin, we get the melting point of indium as 429.15 K.

3. The potential difference between the two terminals is 153.816 V.

To calculate the potential difference, we can use Ohm's Law:

potential difference = current * resistance.

Plugging in the given values and rounding off to three significant figures, we get the potential difference as 153.816 V.

4. (a) The current in the aluminum wire is 0.097 A.

To calculate the current, we can use the formula:

current = charge / time.

Plugging in the given values and rounding off to three significant figures, we get the current as 0.097 A.

(b) The resistance of the aluminum wire is 618.557 Ω.

To calculate the resistance, we can use Ohm's Law:

resistance = potential difference / current.

Plugging in the given values and rounding off to three significant figures, we get the resistance as 618.557 Ω.

5. (a) The area of the wire is 3.537e-6 m².

To calculate the area, we can use the formula:

area = π * radius².

Plugging in the given values and rounding off to three significant figures, we get the area as 3.537e-6 m².

(b) The resistance of the wire is 0.427 Ω.

To calculate the resistance, we can use Ohm's Law:

resistance = potential difference / current.

Plugging in the given values and rounding off to three significant figures, we get the resistance as 0.427 Ω.

(c) The resistivity of the wire is 3.218e-7 Ω·m.

To calculate the resistivity, we can use the formula:

resistivity = resistance * (π * radius²) / length.

Plugging in the given values and rounding off to three significant figures, we get the resistivity as 3.218e-7 Ω·m.

To learn more about resistance, here

https://brainly.com/question/14547003

#SPJ4

A U-shaped tube, open to the air on both ends, contains mercury. Water is poured into the left arm until the water column is 17.8 cm deep.
How far upward from its initial position does the mercury in the right arm rise?

Answers

Mercury in the right arm can rise  upto [tex](1000 kg/m³ / 13600 kg/m³) *[/tex]0.178 m.

In a U-shaped tube open to the air, the pressure at any horizontal level is the same on both sides of the tube. This is due to the atmospheric pressure acting on the open ends of the tube.

When water is poured into the left arm, it exerts a pressure on the mercury column in the right arm, causing it to rise. The pressure exerted by the water column can be calculated using the hydrostatic pressure formula:

P = ρgh

where P is the pressure, ρ is the density of the liquid, g is the acceleration due to gravity, and h is the height of the liquid column.

In this case, the liquid in the left arm is water, and the liquid in the right arm is mercury. The density of water (ρ_water) is approximately 1000 kg/m³, and the density of mercury (ρ_mercury) is approximately 13600 kg/m³.

The water column is 17.8 cm deep, we can calculate the pressure exerted by the water on the mercury column:

[tex]P_water = ρ_water * g * h_water[/tex]

[tex]where h_water = 17.8 cm = 0.178 m.[/tex]

Now, since the pressure is the same on both sides of the U-shaped tube, the pressure exerted by the mercury column (P_mercury) can be equated to the pressure exerted by the water column:

P_mercury = P_water

Using the same formula for the pressure and the density of mercury, we can solve for the height of the mercury column (h_mercury):

P_mercury = ρ_mercury * g * h_mercury

Since P_mercury = P_water and ρ_water, g are known, we can solve for h_mercury:

[tex]ρ_water * g * h_water = ρ_mercury * g * h_mercury[/tex]

[tex]h_mercury = (ρ_water / ρ_mercury) * h_water[/tex]

Substituting the given values:

[tex]h_mercury = (1000 kg/m³ / 13600 kg/m³) * 0.178 m[/tex]

Now, we can calculate the numerical value of the height of the mercury column (h_mercury).

Learn more about numerical value from the given link

https://brainly.com/question/27922641

#SPJ11

The external force creates a pressure of 978 kPa (see figure). G B How much additional pressure occurs at point D?

Answers

To determine the additional pressure at point D, we need more information about the figure or the context of the problem.

Without specific details, it is not possible to calculate the exact additional pressure at point D.

The additional pressure at a specific point depends on various factors such as the depth, fluid density, and the shape of the container or vessel. Please provide more information or clarify the figure to proceed with a specific calculation.

Learn more about pressure here:-

brainly.com/question/30351725

#SPJ11

Other Questions
2. During the organization of the male sexual phenotype during fetal development, what phenotype will develop when there is exposure of body cells to high levels of androgens but the cells have defective androgen receptors that do not bind androgens?Explain. a. Male external phenotype b. Female external phenotype Limestone is made of calcium carbonate. Why would areas with limestone bedrock be less affected by acid rain than areas with other types of bedrock Identify and discuss strategies to effectively maintain anutritious environment for children. For finding median in continuous series, which amongst the following are of importance? Select one: a. Particular frequency of the median class b. Lower limit of the median class c. cumulative frequency preceeding the median class d. all of these For a continuous data distribution, 10 -20 with frequency 3,20 -30 with frequency 5,3040 with frequency 7 and 40-50 with frequency 1 , the value of Q3 is Select one: a. 34 b. 30 c. 35.7 d. 32.6 Identify three different types of personality assessment tools. 1.) 2.) 3.) The St. Fleur family is well respected in the Haitian community because they are religious with great moral values. They moved to the United States because of political issues in Haiti. Ronald, the youngest son of this family, is 27 years old and lives at home with his mother and father. Recently, he began having fevers and subsequently developed pneumonia. He was admitted to the hospital, where laboratory tests were HIV positive. Ronald was in shock when the doctor informed him that he was HIV positive. He confessed to the doctor that he was gay, but he could not tell his family. He said that he did not want to bring shame to the family. Because he couldnt be in a formal relationship disowning to his family and the Haitian communitys view of homosexuality, he has been very promiscuous over the years.What are Haitians views of homosexuality?If Ronalds parents were to learn of his positive HIV status, how might they react if they are religious and traditional?Identify three major culturally congruent strategies a healthcare provider can implement to address HIV prevention practices in the Haitian community? Loki, Inc. and Thor, Inc. have entered into a stock-swap merger agreement whereby Loki will pay a 31% premium over Thor's pre-merger price. If Thor's pre-merger price per share was $39 and Loki's was $46, what exchange ratio will Loki need to offer? The ratio should be shares of Loki for every share of Thor. (Round to two decimal places.) If n is a positive integer, then n4 - n is divisible by 4.[Proof of Exhaustion] Solve the system of equation4x+yz=133x+5y+2z=212x+y+6z=14 The following table shows the number of candy bars bought at a local grocery store and thetotal cost of the candy bars:Candy Bars: 3, 5, 8, 12, 15, 20, 25Total Cost: $6.65, $10.45, $16.15, $23.75, $29.45, $38.95, $48.45Based on the data in the table, find the slope of the linear model that represents the costof the candy per bar: m = The current price of Parador Industries stock is $68 per share. Current sales per share are $15.50, the sales growth rate is 3.5 percent, and Parador does not pay a dividend. The expected return on Parador stock is 14 percent.a. Calculate the sales per share one year ahead. (Round your answer to 2 decimal places.)Sales per shareb. Calculate the P/S ratio one year ahead. (Do not round intermediate calculations. Round your answer to 2 decimal places.)P/S ratio Many U S citizen are stimulated by change and thrive on new opportunities. Theses citizens probably have a high level of acceptance for which dimension of cultural differences Elaborate on the role of human rights in todays internationalsystem. Is it a moral obligation or a political instrument fornation states? During exercise, partial pressure of oxygen:A) is lower in the atmosphere than body cells.B) is inversely proportional to the concentration of oxygen.C) in alveoli is increased during exercise compared with rest.D) within the body is lowest within pulmonary venous blood. A force F =( 8i - 5j )N acts on a particle that undergoes adisplacement r = (2i + j ) m.(a) Find the work done by the force on the particle._______ J(b) What is the angle between F and r?__ 4) Which of the following is true conceming sexual violence?a. Any violent act must be severe enough to require medical attention. b. Any sexual act must be forcible. c. All of the above. d. sxual contact with someone who is drugged, asleep or unable to consent meets the definition of sexual fionce5) What steps can you take to help create an environment that is free of sextial violence? Select alal that anpli?a. Build a team culture where all individuals are respectful and people act to intervere. b. Ensure that your student-athletes are comfortable visiting with you about acts of sexual volencec. Refuse to tolerate sexualized bullying behavior. d. Ignore the issues unless they affect team chemastry. What does MAPE stand for? 1) Mean Additive Percentage Error 2) Mean Absolute Percentage Error 3) Mean Absolute Predictive Error 4) Most Adaptive Predictive Error 5. A person observes that from point A, the angle of elevation to the top of a cliff at D is 30. Another person at point B, notes that the angle of elevation to the top of thecliff is 45. If the height of the cliff is 80.0 m, find the distance between A and B. Show the steps of your solution. The ________ coordinates the computer's operations by fetching the next instruction and using control signals to regulate the other major computer components. Please draw the ray diagram! A 3.0 cm-tall object is placed at a distance of 20.0 cm from a convex mirror that has a focal length of - 60.0 cm. Calculate the position and height of the image. Use the method of ray tracing to sketch the image. State whether the image is formed in front or behind the mirror, and whether the image is upright or inverted. Steam Workshop Downloader