Show that S={x∈R4:2x1​−6x2​+7x3​−8x4​=0} is a subspace of R4.

Answers

Answer 1

Therefore, the answer to the problem is that the given set S={x∈R4:2x1​−6x2​+7x3​−8x4​=0} is indeed a subspace of R4.

To prove that S={x∈R4:2x1​−6x2​+7x3​−8x4​=0} is a subspace of R4, we must show that it satisfies the following three conditions: It contains the zero vector. The addition of vectors in S is in S. The multiplication of a scalar by a vector in S is in S. Condition 1: S contains the zero vector To show that S contains the zero vector, we must show that (0, 0, 0, 0) is in S. We can do this by substituting 0 for each x value:2(0) - 6(0) + 7(0) - 8(0) = 0Thus, the zero vector is in S. Condition 2: S is closed under addition To show that S is closed under addition, we must show that if u and v are in S, then u + v is also in S. Let u and v be arbitrary vectors in S, then: u = (u1, u2, u3, u4), where 2u1 - 6u2 + 7u3 - 8u4 = 0v = (v1, v2, v3, v4), where 2v1 - 6v2 + 7v3 - 8v4 = 0Then:u + v = (u1 + v1, u2 + v2, u3 + v3, u4 + v4)We can prove that u + v is in S by showing that 2(u1 + v1) - 6(u2 + v2) + 7(u3 + v3) - 8(u4 + v4) = 0 Expanding this out:2u1 + 2v1 - 6u2 - 6v2 + 7u3 + 7v3 - 8u4 - 8v4 = (2u1 - 6u2 + 7u3 - 8u4) + (2v1 - 6v2 + 7v3 - 8v4) = 0 + 0 = 0 Thus, u + v is in S.

Condition 3: S is closed under scalar multiplication To show that S is closed under scalar multiplication, we must show that if c is a scalar and u is in S, then cu is also in S. Let u be an arbitrary vector in S, then: u = (u1, u2, u3, u4), where 2u1 - 6u2 + 7u3 - 8u4 = 0 Then: cu = (cu1, cu2, cu3, cu4)We can prove that cu is in S by showing that 2(cu1) - 6(cu2) + 7(cu3) - 8(cu4) = 0Expanding this out: c(2u1 - 6u2 + 7u3 - 8u4) = c(0) = 0Thus, cu is in S. Because S satisfies all three conditions, we can conclude that S is a subspace of R4. Therefore, the answer to the problem is that the given set S={x∈R4:2x1​−6x2​+7x3​−8x4​=0} is indeed a subspace of R4.

To know more about problem visit:

https://brainly.com/question/31816242

#SPJ11


Related Questions

Give as explicitly as possible with the given information, what the eigenvalues and eigenspaces of
S ( 1 0 ) s-¹
( 1 2 )
where S is a random invertible 2×2 matrix with columns (left-to-right) s1 and s2. Explain your answer.

Answers

The eigenvalues of the matrix [tex]S*\left[\begin{array}{cc}1&0\\1&2\end{array}\right] *S^{-1}[/tex] are [tex]\lambda_1 = s_1^2[/tex] and [tex]\lambda_2 = s_2^2[/tex], and the corresponding eigenspaces are the spans of s1 and s2, respectively.

To find the eigenvalues, we need to solve the characteristic equation [tex]det(S*\left[\begin{array}{cc}1&0\\1&2\end{array}\right] *S^{-1} - \lambda I) = 0[/tex], where I is the identity matrix.

Expanding this determinant equation, we have [tex](s_1^2 - \lambda )(s_2^2 - \lambda) - s_1 * s_2 = 0[/tex].

Simplifying, we get [tex]\lambda^2 - (s_1^2 + s_2^2)\lambda + s_1^2 * s_2^2 - s_1 * s_2 = 0[/tex].

Using the quadratic formula, we can solve for λ and obtain [tex]\lambda_1 = s_1^2[/tex] and [tex]\lambda_2 = s_2^2[/tex].

To find the eigenspaces, we substitute the eigenvalues back into the equation [tex](S*\left[\begin{array}{cc}1&0\\1&2\end{array}\right] *S^{-1} - \lambda I)x = 0[/tex] and solve for x.

For [tex]\lambda_1 = s_1^2[/tex], we have [tex](S*\left[\begin{array}{cc}1&0\\1&2\end{array}\right] (1 0; 1 2)*S^{-1} - s_1^2I)x = 0[/tex]. Solving this equation gives us the eigenspace spanned by s1.

Similarly, for [tex]\lambda_2 = s_2^2[/tex], we have [tex](S*\left[\begin{array}{cc}1&0\\1&2\end{array}\right]*S^{-1} - s_2^2I)x = 0[/tex]. Solving this equation gives us the eigenspace spanned by s2.

To learn more about Eigenvalues, visit:

https://brainly.com/question/30715889

#SPJ11

For any random variable X with finite ath order moment, show that Y=10X+1 and X have the mame knurtasis.

Answers

We can show that the random variables Y = 10X + 1 and X have the same kurtosis by using the formula for kurtosis and showing that the fourth central moment of Y is equal to the fourth central moment of X. Therefore, Y and X have the same kurtosis.

To show that the random variables Y = 10X + 1 and X have the same kurtosis, we can use the following formula for the kurtosis of a random variable:

Kurt[X] = E[(X - μ)^4]/σ^4 - 3

where E[ ] denotes the expected value, μ is the mean of X, and σ is the standard deviation of X.

We can first find the mean and variance of Y in terms of the mean and variance of X:

E[Y] = E[10X + 1] = 10E[X] + 1

Var[Y] = Var[10X + 1] = 10^2Var[X]

Next, we can use these expressions to find the fourth central moment of Y in terms of the fourth central moment of X:

E[(Y - E[Y])^4] = E[(10X + 1 - 10E[X] - 1)^4] = 10^4 E[(X - E[X])^4]

Therefore, the kurtosis of Y can be expressed in terms of the kurtosis of X as:

Kurt[Y] = E[(Y - E[Y])^4]/Var[Y]^2 - 3 = E[(10X + 1 - 10E[X] - 1)^4]/(10^4Var[X]^2) - 3 = E[(X - E[X])^4]/Var[X]^2 - 3 = Kurt[X]

where we used the fact that the fourth central moment is normalized by dividing by the variance squared.

Therefore, we have shown that the kurtosis of Y is equal to the kurtosis of X, which means that Y and X have the same kurtosis.

To know more about kurtosis, visit:
brainly.com/question/30036376
#SPJ11



Write a polynomial function with the given zeros. x=1,2,3 .

Answers

A polynomial function with zeros at x = 1, 2, and 3 can be expressed as:

f(x) = (x - 1)(x - 2)(x - 3)

To determine the polynomial function, we use the fact that when a factor of the form (x - a) is present, the corresponding zero is a. By multiplying these factors together, we obtain the desired polynomial function.

Expanding the expression, we have:

f(x) = (x - 1)(x - 2)(x - 3)

     = (x² - 3x + 2x - 6)(x - 3)

     = (x² - x - 6)(x - 3)

     = x³ - x² - 6x - 3x² + 3x + 18

     = x³ - 4x² - 3x + 18

Therefore, the polynomial function with zeros at x = 1, 2, and 3 is f(x) = x³ - 4x² - 3x + 18.

To learn more about polynomial function, refer here:

https://brainly.com/question/11298461

#SPJ11

2. Find the value of k so that the lines = (3,-6,-3) + t[(3k+1), 2, 2k] and (-7,-8,-9)+s[3,-2k,-3] are perpendicular. (Thinking - 2)

Answers

To find the value of k such that the given lines are perpendicular, we can use the fact that the direction vectors of two perpendicular lines are orthogonal to each other.

Let's consider the direction vectors of the given lines:

Direction vector of Line 1: [(3k+1), 2, 2k]

Direction vector of Line 2: [3, -2k, -3]

For the lines to be perpendicular, the dot product of the direction vectors should be zero:

[(3k+1), 2, 2k] · [3, -2k, -3] = 0

Expanding the dot product, we have:

(3k+1)(3) + 2(-2k) + 2k(-3) = 0

9k + 3 - 4k - 6k = 0

9k - 10k + 3 = 0

-k + 3 = 0

-k = -3

k = 3

Therefore, the value of k that makes the two lines perpendicular is k = 3.

Learn more about perpendicular here

https://brainly.com/question/12746252

#SPJ11

How do you do this because I am very confused

Answers

Using ratios and proportions on the similar triangle, the length of MK is 122.8 units

What are similar triangles?

Similar triangles are triangles that have the same shape but may differ in size. They have corresponding angles that are equal, and the ratios of the lengths of their corresponding sides are proportional. In other words, if two triangles are similar, their corresponding angles are congruent, and the ratios of the lengths of their corresponding sides are equal.

In the triangles given, using similar triangle, we can find the missing side by comparing ratios and setting proportions.

JH / MK =  HI / KL

Substituting the values;

36 / MK = 17 / 58

Cross multiplying both sides;

MK = (58 * 36) / 17

MK = 122.8

Learn more on similar triangles here ;

https://brainly.com/question/14285697

#SPJ1

Compute u + vand u- -3v. u+v= u-3v= 5 (Simplify your answer.) (Simplify your answer.) Witter Recreation....m43 PPN SOME Isitry BOCCHA point

Answers

u + v = 5

u - 3v = 5

To compute u + v, we add the values of u and v together. Since the given equation is u + v = 5, we can conclude that the sum of u and v is equal to 5.

Similarly, to compute u - 3v, we subtract 3 times the value of v from u. Again, based on the given equation u - 3v = 5, we can determine that the result of subtracting 3 times v from u is equal to 5.

It's important to simplify the answer by performing the necessary calculations and combining like terms. By simplifying the expressions, we obtain the final results of u + v = 5 and u - 3v = 5.

These equations represent the relationships between the variables u and v, with the specific values of 5 for both u + v and u - 3v.

Learn more about Variables

brainly.com/question/15078630

#SPJ11

Find the vertices, foci, and asymptotes of each hyperbola.

4y²- 9x²=36

Answers

The vertices of the hyperbola are (0, ±3), the foci are located at (0, ±√13), and the asymptotes are given by y = ±(3/2)x

To find the vertices, foci, and asymptotes of the hyperbola given by the equation 4y² - 9x² = 36, we need to rewrite the equation in standard form.

Dividing both sides of the equation by 36, we get

(4y²/36) - (9x²/36) = 1.

we have

(y²/9) - (x²/4) = 1.

By comparing with standard equation of hyperbola,

(y²/a²) - (x²/b²) = 1,

we can see that a² = 9 and b² = 4.

Therefore, the vertices are located at (0, ±a) = (0, ±3), the foci are at (0, ±c), where c is given by the equation c² = a² + b².

Substituting the values, we find c² = 9 + 4 = 13, so c ≈ √13. Thus, the foci are located at (0, ±√13).

Finally, the asymptotes of the hyperbola can be determined using the formula y = ±(a/b)x. Substituting the values, we have y = ±(3/2)x.

Therefore, the vertices of the hyperbola are (0, ±3), the foci are located at (0, ±√13), and the asymptotes are given by y = ±(3/2)x.

To know more about hyperbola refer here:

https://brainly.com/question/27799190

#SPJ11

QUESTION 7 Use the inclusion-exclusion principle to determine (a) how many arrangements of length n there are of the letters a,b,c (repetitions allowed) with each letter occurring at least once. (b) the number of ways to distribute 26 identical balls into six distinct containers with at most six balls in any of the first three containers.

Answers

(a) The number of arrangements of length n with each letter occurring at least once can be calculated using the inclusion-exclusion principle as 3ⁿ - (2ⁿ + 2ⁿ + 2ⁿ) + (1ⁿ + 1ⁿ + 1ⁿ) - 1.

(b) The number of ways to distribute 26 identical balls into six distinct containers with at most six balls in any of the first three containers can be calculated using the inclusion-exclusion principle as C(31, 5) - C(25, 5) - C(25, 5) - C(25, 5).

The inclusion-exclusion principle is a counting technique used to determine the number of elements in a set that satisfy certain conditions. Let's apply this principle to answer both parts of the question:

(a) To determine the number of arrangements of length n of the letters a, b, and c with each letter occurring at least once, we can use the inclusion-exclusion principle.

Consider the total number of arrangements of length n with repetitions allowed, which is 3ⁿ since each letter has 3 choices.

Subtract the arrangements that do not include at least one of the letters. There are 2ⁿ arrangements that exclude letter a, as we only have 2 choices (b and c) for each position. Similarly, there are 2ⁿ arrangements that exclude letter b and 2ⁿ arrangements that exclude letter c.

However, we have double-counted the arrangements that exclude two letters. There are 1ⁿ arrangements that exclude both letters a and b, and likewise for excluding letters b and c, and letters a and c.

Finally, we need to add back the arrangements that exclude all three letters, as they were subtracted twice. There is only 1 arrangement that excludes all three letters.

In summary, the number of arrangements of length n with each letter occurring at least once can be calculated using the inclusion-exclusion principle as:

3ⁿ - (2ⁿ + 2ⁿ + 2ⁿ) + (1ⁿ + 1ⁿ + 1ⁿ) - 1

(b) To determine the number of ways to distribute 26 identical balls into six distinct containers with at most six balls in any of the first three containers, we can again use the inclusion-exclusion principle.

Consider the total number of ways to distribute the balls without any restrictions. This can be calculated using the stars and bars method as C(26+6-1, 6-1), which is C(31, 5).

Subtract the number of distributions where the first container has more than 6 balls. There are C(20+6-1, 6-1) ways to distribute the remaining 20 balls into the last 3 containers.

Similarly, subtract the number of distributions where the second container has more than 6 balls. Again, there are C(20+6-1, 6-1) ways to distribute the remaining 20 balls into the last 3 containers.

Lastly, subtract the number of distributions where the third container has more than 6 balls, which is again C(20+6-1, 6-1).

In summary, the number of ways to distribute 26 identical balls into six distinct containers with at most six balls in any of the first three containers can be calculated using the inclusion-exclusion principle as:

C(31, 5) - C(25, 5) - C(25, 5) - C(25, 5)

To know more about inclusion-exclusion principle, refer to the link below:

https://brainly.com/question/32375490#

#SPJ11

What is the probability that more than thirteen loads occur during a 4-year period? (round your answer to three decimal places.)

Answers

The probability that more than thirteen loads occur during a 4-year period is approximately 0.100 or 10%.

The given distribution is Poisson distribution with mean lambda = 3 loads per year.Thus, the number of loads X per year is given by the Poisson distribution P(X = x) = (e^-λ * λ^x) / x!, where e is the mathematical constant approximately equal to 2.71828, and x = 0, 1, 2, 3, …, n.

First, we can calculate the mean and variance for the distribution, which are both equal to λ = 3 loads per year, respectively. Hence, the mean and variance for the distribution over the 4-year period would be 12 loads (4 * 3 = 12).

Now, we can calculate the probability of more than 13 loads over the 4-year period using the Poisson distribution with lambda = 12 as follows:

P(X > 13) = 1 - P(X ≤ 13)

P(X ≤ 13) = ∑ (k = 0 to 13) P(X = k)=∑ (k = 0 to 13) ((e^-12 * 12^k) / k!)≈ 0.900

Therefore, the probability of more than thirteen loads occurring during a 4-year period is:

P(X > 13) = 1 - P(X ≤ 13) ≈ 1 - 0.900 ≈ 0.100 or 10% (rounded to three decimal places).

Hence, the probability that more than thirteen loads occur during a 4-year period is approximately 0.100 or 10%.

Know more about Poisson distribution here,

https://brainly.com/question/30388228

#SPJ11

Find the hcf by use continued division method of 540,629

Answers

To find the highest common factor (HCF) of 540 and 629 using the continued division method, we will perform a series of divisions until we reach a remainder of 0.The HCF of 540 and 629 is 1.

Step 1: Divide 629 by 540.

The quotient is 1, and the remainder is 89.

Step 2: Divide 540 by 89.

The quotient is 6, and the remainder is 54.

Step 3: Divide 89 by 54.

The quotient is 1, and the remainder is 35.

Step 4: Divide 54 by 35.

The quotient is 1, and the remainder is 19.

Step 5: Divide 35 by 19.

The quotient is 1, and the remainder is 16.

Step 6: Divide 19 by 16.

The quotient is 1, and the remainder is 3.

Step 7: Divide 16 by 3.

The quotient is 5, and the remainder is 1.

Step 8: Divide 3 by 1.

The quotient is 3, and the remainder is 0.

Since we have reached a remainder of 0, the last divisor used (in this case, 1) is the HCF of 540 and 629.

Therefore, the HCF of 540 and 629 is 1.

Learn more about factor here

https://brainly.com/question/6561461

#SPJ11

Solve the given linear programming problem using the table method. Maximize P=6x₁ + 7x₂ subject to: 2x₁ + 3x₂ ≤ 12 2x₁ + x₂ 58 x1, x₂ 20 O A. Max P = 55 at x₁ = 4, x₂ = 4 B. Max P = 32 at x₁ = 3, x₂ = 2 C. Max P = 24 at x₁ = 4. x₂ = 0 D. Max P=32 at x₁ = 2, x₂ = 3 ICKEN

Answers

The maximum value of P is 24, which occurs when x₁ = 4 and x₂ = 0.

To solve the given linear programming problem using the table method, we can follow these steps:

Step 1: Set up the initial table by listing the variables, coefficients, and constraints.

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 6  | 7  | P |

------------------------

C₁        | 2  | 3  | 12|

------------------------

C₂        | 2  | 1  | 58|

```

Step 2: Compute the relative profit (P) values for each variable by dividing the objective row coefficients by the corresponding constraint row coefficients.

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 6  | 7  | P |

------------------------

C₁        | 2  | 3  | 12|

------------------------

C₂        | 2  | 1  | 58|

```

Relative Profit (P) values:

```

         | x₁ | x₂ |   |

------------------------

Objective | 3  | 7/2| P |

------------------------

C₁        | 2  | 3  | 12|

------------------------

C₂        | 2  | 1  | 58|

```

Step 3: Select the variable with the highest relative profit (P) value. In this case, it is x₂.

Step 4: Compute the ratio for each constraint by dividing the right-hand side (RHS) value by the coefficient of the selected variable.

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 3  | 7/2| P |

------------------------

C₁        | 2  | 3  | 12|

------------------------

C₂        | 2  | 1  | 58|

```

Ratios:

```

         | x₁ | x₂ |   |

------------------------

Objective | 3  | 7/2| P |

------------------------

C₁        | 2  | 3  | 6 |

------------------------

C₂        | 2  | 1  | 58|

```

Step 5: Select the constraint with the lowest ratio. In this case, it is C₁.

Step 6: Perform row operations to make the selected variable (x₂) the basic variable in the selected constraint (C₁).

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 3  | 0  | P |

------------------------

C₁        | 2  | 3  | 6 |

------------------------

C₂        | 2  | 1  | 58|

```

Step 7: Update the remaining values in the table using the row operations.

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 3  | 0  | 18|

------------------------

C₁        | 2  | 3  | 6 |

------------------------

C₂        | 2  | 1  | 58|

```

Step 8: Repeat steps 3-7 until there are no negative values in the objective row.

Coefficients:

```

         | x₁ | x₂ |   |

------------------------

Objective | 0  | 0  | 24|

------------------------

C₁        | 2  | 3  | 6 |

------------------------

C₂        | 2  | 1  | 58|

```

Step 9: The maximum value of P is 24, which occurs when x₁ = 4 and x₂ = 0.

Therefore, the correct answer is:

C. Max P = 24 at x₁ = 4, x₂ = 0

Learn more about linear programming

https://brainly.com/question/30763902

#SPJ11



Determine whether the quadrilateral is a parallelogram. Justify your answer using the given formula.


a. A(3,3), B(8,2), C(6,-1), D(1,0) ; Distance Formula

Answers

The given quadrilateral is not a parallelogram. Using the Distance Formula, the lengths of the opposite sides are not equal, indicating that the quadrilateral does not satisfy the property of a parallelogram.

Using the Distance Formula, we can determine the lengths of the sides of the quadrilateral.

Calculating the distances:

AB = √[(8-3)² + (2-3)²]

BC = √[(6-8)² + (-1-2)²]

CD = √[(1-6)² + (0-(-1))²]

DA = √[(3-1)² + (3-0)²]

If the opposite sides of the quadrilateral are equal in length, then it is a parallelogram.

Comparing the distances:

AB ≠ CD (different lengths)

BC ≠ DA (different lengths)

Since the opposite sides of the quadrilateral do not have equal lengths, it is not a parallelogram.

Learn more about parallelogram here:

https://brainly.com/question/28854514

#SPJ11

HELLOO!! I really need to have this answered. Please help me!! Thank you!!!

Answers

Answer:

Step-by-step explanation:

The first one is equal to.  203/203 is equal to 1.  1 times any number is itself.

The second on is less than.  9/37 is a proper fraction and when a number is multiplied by a proper fraction, it gets smaller.

What are the fundamental differences between intentional torts and negligence? Select one intentional tort and explain the elements that are necessary in order to prove that intentional tort.

Answers

The plaintiff must demonstrate that the defendant intended to touch the plaintiff without consent, that the defendant did in fact touch the plaintiff, and that the plaintiff suffered harm as a result of the touching.

Intentional torts are civil wrongs that result from intentional conduct while negligence is the failure to take reasonable care to avoid causing injury to others. The primary difference between the two is the state of mind of the person causing harm. Intentional torts involve an intent to cause harm, while negligence involves a lack of care or attention. For example, if a person intentionally hits another person, that is an intentional tort, but if they accidentally hit them, that is negligence.

The following are the necessary elements of an intentional tort:

1. Intent: The plaintiff must demonstrate that the defendant intended to cause harm to the plaintiff.

2. Act: The defendant must have acted in a manner that caused harm to the plaintiff.

3. Causation: The plaintiff must prove that the defendant's act caused the harm that the plaintiff suffered.

4. Damages: The plaintiff must have suffered some type of harm as a result of the defendant's act.

One common intentional tort is battery. Battery is the intentional and wrongful touching of another person without that person's consent. In order to prove battery, the plaintiff must demonstrate that the defendant intended to touch the plaintiff without consent, that the defendant did in fact touch the plaintiff, and that the plaintiff suffered harm as a result of the touching. For example, if someone intentionally punches another person, they could be sued for battery.

To know more about defendant's act refer to

https://brainly.com/question/32719809

#SPJ11

let a be a m × n real matrix. let x be a n × 1 column vector, and y be a m × 1 column vector. prove that ⟨ax, y⟩

Answers

The expression ⟨ax, y⟩ represents the inner product (also known as dot product) between the column vector ax and the column vector y. To prove this, we can expand the inner product using matrix and vector operations.

First, let's write the given matrix equation explicitly. We have:

ax = [a1x1 + a2x2 + ... + anx_n]

where a1, a2, ..., an are the columns of matrix a, and x1, x2, ..., xn are the elements of vector x.

Expanding the inner product, we get:

⟨ax, y⟩ = ⟨[a1x1 + a2x2 + ... + anx_n], y⟩

Using the linearity of the inner product, we can distribute it over the addition:

⟨ax, y⟩ = ⟨a1x1, y⟩ + ⟨a2x2, y⟩ + ... + ⟨anx_n, y⟩

Now, let's focus on one term ⟨aixi, y⟩ for some i (1 ≤ i ≤ n). We can apply the properties of the inner product:

⟨aixi, y⟩ = (aixi)ᵀy

Expanding the transpose and using matrix and vector operations, we have:

(aixi)ᵀy = (xiᵀaiᵀ)y = xiᵀ(aiᵀy)

Recall that aiᵀ is the transpose of the ith column of matrix a. Thus, we can rewrite the expression as:

xiᵀ(aiᵀy) = (xiᵀaiᵀ)y = ⟨xi, aiᵀy⟩

Therefore, we can rewrite the original inner product as:

⟨ax, y⟩ = ⟨a1x1, y⟩ + ⟨a2x2, y⟩ + ... + ⟨anx_n, y⟩ = ⟨x1, a1ᵀy⟩ + ⟨x2, a2ᵀy⟩ + ... + ⟨xn, anᵀy⟩

So, we have shown that ⟨ax, y⟩ is equal to the sum of the inner products between each component of vector x and the transpose of the corresponding column of matrix a multiplied by vector y.

Learn more about matrix here:

brainly.com/question/28180105

#SPJ11

Amount (in cedis) 1.00 2.00 3.00 4.00 5.00 No of Students 1 3 2 5 1 4 6.00 a) Draw a bar chart for the distribution b) Find correct to the nearest pesewa. the mean i) ii) the median iii) the mode​

Answers

a) Bar chart for the distribution:

Amount (in cedis)     |  No of Students

-------------------------------------

1.00                  |     1

2.00                  |     3

3.00                  |     2

4.00                  |     5

5.00                  |     1

b) i) The mean is 3.17 cedis (corrected to the nearest pesewa).

ii) The median is 4.00 cedis.

iii) The mode is 4.00 cedis.

a)For the distribution, a bar graph

Amount (in cedis)     |  No of Students

-------------------------------------

1.00                  |     1

2.00                  |     3

3.00                  |     2

4.00                  |     5

5.00                  |     1

-------------------------------------

b) i) Mean: To find the mean, we need to calculate the sum of the products of each amount and its corresponding frequency, and then divide it by the total number of students.

Sum of products = (1.00 * 1) + (2.00 * 3) + (3.00 * 2) + (4.00 * 5) + (5.00 * 1) = 1.00 + 6.00 + 6.00 + 20.00 + 5.00 = 38.00

Total number of students = 1 + 3 + 2 + 5 + 1 = 12

Mean = Sum of products / Total number of students = 38.00 / 12 = 3.17 cedis (corrected to the nearest pesewa)

ii) Median: To find the median, we need to arrange the amounts in ascending order and determine the middle value. Since the total number of students is 12, the middle value would be the 6th value.

Arranging the amounts in ascending order: 1.00, 2.00, 3.00, 3.00, 4.00, 4.00, 4.00, 4.00, 4.00, 5.00, 5.00, 5.00

The 6th value is 4.00, so the median is 4.00 cedis.

iii) Mode: The mode is the value that appears most frequently. In this case, the mode is 4.00 cedis since it appears the most number of times (5 times).

for such more question on median

https://brainly.com/question/14532771

#SPJ8

If a fair coin is flipped 15 times what is the probability of of getting exactly 10 tails? (You do not need to simplify your answer). 9. Show that events A and B are independent if P(A)=0.8,P(B)=0.6, and P(A∪B)=0.92.

Answers

The probability of getting exactly 10 tails when flipping a fair coin 15 times is approximately 0.0916 or 9.16%. Additionally, events A and B are independent since their intersection probability is equal to the product of their individual probabilities.

The probability of getting exactly 10 tails when a fair coin is flipped 15 times can be calculated using the binomial probability formula.

To find the probability, we need to determine the number of ways we can get 10 tails out of 15 flips, and then multiply it by the probability of getting a single tail raised to the power of 10, and the probability of getting a single head raised to the power of 5.

The binomial probability formula is:
P(X=k) = C(n,k) * p^k * (1-p)^(n-k)
Where:
- P(X=k) is the probability of getting exactly k tails
- n is the total number of coin flips (15 in this case)
- k is the number of tails we want (10 in this case)
- C(n,k) is the number of ways to choose k tails out of n flips (given by the binomial coefficient)
- p is the probability of getting a single tail (0.5 for a fair coin)
- (1-p) is the probability of getting a single head (also 0.5 for a fair coin)

Using the formula, we can calculate the probability as follows:

P(X=10) = C(15,10) * (0.5)¹⁰ * (0.5)¹⁵⁻¹⁰

Calculating C(15,10) = 3003 and simplifying the equation, we get:

P(X=10) = 3003 * (0.5)¹⁰ * (0.5)⁵
        = 3003 * (0.5)¹⁵
        = 3003 * 0.0000305176
        ≈ 0.0916

Therefore, the probability of getting exactly 10 tails when a fair coin is flipped 15 times is approximately 0.0916, or 9.16%.

Moving on to the second question about events A and B being independent. Two events A and B are considered independent if the occurrence of one event does not affect the probability of the other event.

To show that events A and B are independent, we need to check if the probability of their intersection (A∩B) is equal to the product of their individual probabilities (P(A) * P(B)).

Given:
P(A) = 0.8
P(B) = 0.6
P(A∪B) = 0.92

We can use the formula for the probability of the union of two events to find the probability of their intersection:
P(A∪B) = P(A) + P(B) - P(A∩B)

Rearranging the equation, we get:
P(A∩B) = P(A) + P(B) - P(A∪B)

Plugging in the given values, we have:
P(A∩B) = 0.8 + 0.6 - 0.92
       = 1.4 - 0.92
       = 0.48

Now, let's check if P(A∩B) is equal to P(A) * P(B):
0.48 = 0.8 * 0.6
    = 0.48

Since P(A∩B) is equal to P(A) * P(B), we can conclude that events A and B are independent.

To know more about binomial probability, refer to the link below:

https://brainly.com/question/33174773#

#SPJ11

Consider this argument:
- If it is going to snow, then the school is closed.
- The school is closed.
- Therefore, it is going to snow.
(i) Translate this argument into the language of propositional logic by defining propositional variables, using logical connectives as necessary, and labelling the premises and conclusion.
(ii) Is this argument valid? Justify your response by constructing a truth table or a truth tress and applying the definition of a valid argument. If the argument is valid, what are the possible truth values of the conclusion?

Answers

The argument is valid, and the possible truth value of the conclusion is true (T).

(i) Let's define the propositional variables as follows:

P: It is going to snow.

Q: The school is closed.

The premises and conclusion can be represented as:

Premise 1: P → Q (If it is going to snow, then the school is closed.)

Premise 2: Q (The school is closed.)

Conclusion: P (Therefore, it is going to snow.)

(ii) To determine the validity of the argument, we can construct a truth table for the premises and the conclusion. The truth table will consider all possible combinations of truth values for P and Q.

(truth table is attached)

In the truth table, we can see that there are two rows where both premises are true (the first and third rows). In these cases, the conclusion is also true.

Since the argument is valid (the conclusion is true whenever both premises are true), the possible truth values of the conclusion are true (T).

To know more about propositional logic, refer here:

https://brainly.com/question/33632547#

#SPJ11

Question 1 [ 20 points] The region D is enclosed by x+y=2,y=x, and y-axis. a) [10 points] Give D as a type I region, and a type II region, and the region D. b) [10 points] Evaluate the double integral ∬ D ​ 3ydA. To evaluate the given double integral, which order of integration you use? Justify your choice of the order of integration.

Answers

a) The region D can be described as a type I region with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 - x, and as a type II region with 0 ≤ y ≤ 2 and 0 ≤ x ≤ 2 - y. The region D is the triangular region below the line y = x, bounded by the x-axis, y-axis, and the line x + y = 2.

b) To evaluate the double integral ∬ D ​3ydA, we will use the order of integration dydx.

a) A type I region is characterized by a fixed interval of one variable (in this case, x) and the other variable (y) being dependent on the fixed interval. In the given problem, when 0 ≤ x ≤ 2, the corresponding interval for y is given by 0 ≤ y ≤ 2 - x, as determined by the equation x + y = 2. Therefore, the region D can be expressed as a type I region with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 - x.

Alternatively, a type II region is defined by a fixed interval of one variable (y) and the other variable (x) being dependent on the fixed interval. In this case, when 0 ≤ y ≤ 2, the corresponding interval for x is given by 0 ≤ x ≤ 2 - y. Thus, the region D can also be represented as a type II region with 0 ≤ y ≤ 2 and 0 ≤ x ≤ 2 - y.

Overall, the region D is a triangular region that lies below the line y = x, bounded by the x-axis, y-axis, and the line x + y = 2.

b) To evaluate the double integral ∬ D ​3ydA, we need to determine the order of integration. The choice of the order depends on the nature of the region and the integrand.

In this case, since the region D is a triangular region and the integrand is 3y, it is more convenient to use the order of integration dydx. This means integrating with respect to y first and then with respect to x. The limits of integration for y are 0 to 2 - x, and the limits of integration for x are 0 to 2.

By integrating 3y with respect to y over the interval [0, 2 - x], and then integrating the result with respect to x over the interval [0, 2], we can evaluate the given double integral.

Learn more about integration

brainly.com/question/31744185

#SPJ11

Four tickets for $60.
Price per ticket

Answers

Answer:

$15 per ticket

Step-by-step explanation:

60 dollars / 4 tickets = $15 per ticket

15 per ticket
4 divided by 60 is 15

Determine the solution of differential function dy/dx=3x−4 With the condition y(0)=−12

Answers

The solution to the differential equation dy/dx = 3x - 4 with the initial condition y(0) = -12 is y = (3/2)x^2 - 4x - 12.

To solve the differential equation dy/dx = 3x - 4 with the initial condition y(0) = -12, we can follow these steps:

Integrate both sides of the equation with respect to x:

∫dy = ∫(3x - 4)dx

Integrate the right side of the equation:

y = (3/2)x^2 - 4x + C

Apply the initial condition y(0) = -12 to find the value of the constant C:

-12 = (3/2)(0)^2 - 4(0) + C

-12 = C

Substitute the value of C back into the equation:

y = (3/2)x^2 - 4x - 12

Know  more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

Consider the following differential equation to be solved by the method of undetermined coefficients. y" - 6y' + 9y = 6x + 3 Find the complementary function for the differential equation. y c(x) = Find the particular solution for the differential equation. Yp(x) = Find the general solution for the differential equation. y(x) =

Answers

The complementary function (cf) for the given differential equation is yc(x) = C₁e^(3x) + C₂xe^(3x).

Find the complementary function, particular solution, and general solution for the given differential equation using the method of undetermined coefficients?

To solve the given differential equation by the method of undetermined coefficients, we need to find the complementary function (yc(x)), the particular solution (Yp(x)), and the general solution (y(x)).

Complementary function (yc(x)):

The complementary function represents the solution to the homogeneous equation obtained by setting the right-hand side of the differential equation to zero. The homogeneous equation for the given differential equation is:

y'' - 6y' + 9y = 0

To solve this homogeneous equation, we assume a solution of the form [tex]y = e^(rx).[/tex] Plugging this into the equation and simplifying, we get:

[tex]r^2e^(rx) - 6re^(rx) + 9e^(rx) = 0[/tex]

Factoring out [tex]e^(rx)[/tex], we have:

[tex]e^(rx)(r^2 - 6r + 9) = 0[/tex]

Simplifying further, we find:

[tex](r - 3)^2 = 0[/tex]

This equation has a repeated root of r = 3. Therefore, the complementary function (yc(x)) is given by:

[tex]yc(x) = C1e^(3x) + C2xe^(3x)[/tex]

where C1 and C2 are arbitrary constants.

Particular solution (Yp(x)):

To find the particular solution (Yp(x)), we assume a particular form for the solution based on the form of the non-homogeneous term on the right-hand side of the differential equation. In this case, the non-homogeneous term is 6x + 3.

Since the non-homogeneous term contains a linear term (6x) and a constant term (3), we assume a particular solution of the form:

Yp(x) = Ax + B

Substituting this assumed form into the differential equation, we get:

0 - 6(1) + 9(Ax + B) = 6x + 3

Simplifying the equation, we find:

9Ax + 9B - 6 = 6x + 3

Equating coefficients of like terms, we have:

9A = 6 (coefficients of x terms)

9B - 6 = 3 (coefficients of constant terms)

Solving these equations, we find A = 2/3 and B = 1. Therefore, the particular solution (Yp(x)) is:

Yp(x) = (2/3)x + 1

General solution (y(x)):

The general solution (y(x)) is the sum of the complementary function (yc(x)) and the particular solution (Yp(x)). Therefore, the general solution is:

[tex]y(x) = yc(x) + Yp(x) = C1e^(3x) + C2xe^(3x) + (2/3)x + 1[/tex]

where C1 and C2 are arbitrary constants.

The particular solution is then found by assuming a specific form based on the non-homogeneous term. The general solution is obtained by combining the complementary function and the particular solution. The arbitrary constants in the general solution allow for the incorporation of initial conditions or boundary conditions, if provided.

Learn more about complementary function

brainly.com/question/29083802

#SPJ11

What is the quotient of -10 and -5? O-15 0-2 02 O 15​

Answers

The quotient of -10 and -5 is 2,option c is correct .

The quotient is the result of dividing one number by another. In division, the quotient is the number that represents how many times one number can be divided by another. It is the answer or result of the division operation. For example, when you divide 10 by 2, the quotient is 5 because 10 can be divided by 2 five times without any remainder.

When dividing two negative numbers, the quotient is a positive number. In this case, when you divide -10 by -5, you are essentially asking how many times -5 can be subtracted from -10.Starting with -10, if we subtract -5 once, we get -5. If we subtract -5 again, we get 0. Therefore, -10 can be divided by -5 exactly two times, resulting in a quotient of 2.

-10/-5 =2

Alternatively, you can think of it as a multiplication problem. Dividing -10 by -5 is the same as multiplying -10 by the reciprocal of -5, which is 1/(-5) or -1/5. So, -10 multiplied by -1/5 is equal to 2.

To know more about quotient ,click

brainly.com/question/16134410

Answer:

What is the quotient of -10 and -5? O-15 0-2 02 O 15​

Step-by-step explanation:

Find all the zeras of the function, (Enter your answers as a comma-teparated litt.) f(s)=3s7−4g2+8s+8 Write the polynomial as a product of linear factors. Use a graphing itiley to venfy your retults graphicaly.

Answers

The zeros of the function f(s) = 3s^7 - 4s^2 + 8s + 8 are s = -1, s = 0, and s = 2. The polynomial can be written as a product of linear factors as f(s) = 3s(s + 1)(s - 2).

To find the zeros of the function, we can factor the polynomial. We can do this by first grouping the terms as follows:

```

f(s) = (3s^7 - 4s^2) + (8s + 8)

```

We can then factor out a 3s^2 from the first group and an 8 from the second group:

```

f(s) = 3s^2(s^3 - 4/3) + 8(s + 1)

```

The first group can be factored using the difference of cubes factorization:

```

s^3 - 4/3 = (s - 2/3)(s^2 + 2/3s + 4/9)

```

The second group can be factored as follows:

```

s + 1 = (s + 1)

```

Therefore, the complete factorization of the polynomial is:

```

f(s) = 3s(s - 2/3)(s^2 + 2/3s + 4/9)(s + 1)

```

The zeros of the polynomial are the values of s that make the polynomial equal to 0. We can see that the polynomial is equal to 0 when s = 0, s = -1, or s = 2. Therefore, the zeros of the function are s = -1, s = 0, and s = 2.

The function has three zeros, which correspond to the points where the graph crosses the x-axis. These points are at s = -1, s = 0, and s = 2.

Learn more about polynomial here:

brainly.com/question/11536910

#SPJ11

Mohit ranks 16th in a class of 35 students. What will be his rank from the last?

Please let me know ASAP!

Answers

Answer:

19th place from last

Step-by-step explanation:

If someone ranks xth place out of 35 students, then the rank from the last would (35-x)th place.

35-16=19th place

You need to do 35-16 then that gives u the value from last which is 19

Given: Circle P P with center at (-4,1) which equation could represent circle P

Answers

The possible equation of the circle P is (x + 4)² + (y - 1)² = 16

Determining the possible equation of the circle P

From the question, we have the following parameters that can be used in our computation:

The circle

Where, we have

Center = (a, b) = (-4, 1)

The equation of the circle P can berepresented as

(x - a)² + (y - b)² = r²

So, we have

(x + 4)² + (y - 1)² = r²

Assume that

Radius, r = 4 units

So, we have

(x + 4)² + (y - 1)² = 4²

Evaluate

(x + 4)² + (y - 1)² = 16

Hence, the equation is (x + 4)² + (y - 1)² = 16

Read more about circles at

brainly.com/question/24810873

#SPJ1

Which Of The Following Statements Are Correct In The Simple CLRM Of One Variable And An Intercept Y=Β1+Β2X+U ? (Choose All Correct Answers) If We Know That Β2^<0 Then Also Β^1&Lt;0. The Sample Correlation Of X And U^ Is Always Zero. The OLS Estimators Of The Regression Coefficients Are Unbiased. The Estimator Of Β2 Is Efficient Because It Has Lower Variance

Answers

The correct statements in the simple classical linear regression model (CLRM) with one variable and an intercept (Y = β1 + β2X + U) are:

1. If we know that β2 < 0, then also β1 < 0.

2. The OLS estimators of the regression coefficients are unbiased.

Let's analyze each statement:

1. If we know that β2 < 0, then also β1 < 0.

  This statement is correct. In the simple CLRM, β1 represents the intercept, and β2 represents the slope coefficient. If the slope coefficient (β2) is negative, it implies that there is a negative relationship between X and Y. Consequently, the intercept (β1) needs to be negative to account for the starting point of the regression line.

2. The OLS estimators of the regression coefficients are unbiased.

  This statement is correct. In the ordinary least squares (OLS) estimation method used in the simple CLRM, the estimators of β1 and β2 are unbiased. This means that, on average, the OLS estimators will be equal to the true population values of the coefficients. The unbiasedness property is a desirable characteristic of the OLS estimators.

The other two statements are incorrect:

3. The sample correlation of X and U^ is always zero.

  This statement is not necessarily true. The error term (U) in the simple CLRM represents the part of the dependent variable (Y) that is not explained by the independent variable (X). The sample correlation between X and the estimated error term (U^) can be different from zero if there is a relationship between X and the unexplained variation in Y.

4. The estimator of β2 is efficient because it has lower variance.

  This statement is incorrect. The efficiency of an estimator refers to its ability to achieve the lowest possible variance among all unbiased estimators. In the simple CLRM, the OLS estimator of β2 is indeed unbiased, but it is not necessarily efficient. Other estimation methods or assumptions may yield more efficient estimators depending on the characteristics of the data and the model.

To summarize, the correct statements are:

- If we know that β2 < 0, then also β1 < 0.

- The OLS estimators of the regression coefficients are unbiased.

Learn more about variance here:brainly.com/question/9304306

#SPJ11

Given: ∆MNP, PM = 8 m∠P = 90°, m∠N = 58° Find: Perimeter of ∆MNP

(Not 22.4 or 22.43)


Please answer ASAP, brainly awarded.

Answers

Answer:

Step-by-step explanation:

Triangle MNP is a right triangle with the following values:

m∠P = 90°m∠N = 58°PM = 8

Interior angles of a triangle sum to 180°. Therefore:

m∠M + m∠N + m∠P = 180°

m∠M + 58° + 90° = 180°

m∠M + 148° = 180°

m∠M = 32°

To find the measures of sides MN and NP, use the Law of Sines:

[tex]\boxed{\begin{minipage}{7.6 cm}\underline{Law of Sines} \\\\$\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$\\\\\\where:\\ \phantom{ww}$\bullet$ $A, B$ and $C$ are the angles. \\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides opposite the angles.\\\end{minipage}}[/tex]

Substitute the values into the formula:

[tex]\dfrac{MN}{\sin P}=\dfrac{NP}{\sin M}=\dfrac{PM}{\sin N}[/tex]

[tex]\dfrac{MN}{\sin 90^{\circ}}=\dfrac{NP}{\sin 32^{\circ}}=\dfrac{8}{\sin 58^{\circ}}[/tex]

Therefore:

[tex]MN=\dfrac{8\sin 90^{\circ}}{\sin 58^{\circ}}=9.43342722...[/tex]

[tex]NP=\dfrac{8\sin 32^{\circ}}{\sin 58^{\circ}}=4.99895481...[/tex]

To find the perimeter of triangle MNP, sum the lengths of the sides.

[tex]\begin{aligned}\textsf{Perimeter}&=MN+NP+PM\\&=9.43342722...+4.99895481...+8\\&=22.4323820...\\&=22.43\; \sf units\; (2\;d.p.)\end{aligned}[/tex]

Explain briefly the six main criteria that can be used to define normality and abnormality, by illustrating them with one psychological "abnormality" (other than homosexuality).
What may be the values and limitations of using the medical model and classification systems (which are originated from diagnosing and treating physical illnesses) to the understanding and treating of psychological disorders?
The six criteria are:
1. Abnormality as statistical infrequency (Involves comparison with other people)
2. Abnormality as personal distress (Involves consequences of the behavior for self)
3. Abnormality as others’ distress (Involves the consequences of the behavior for others)
4. Abnormality as unexpected behavior (Involves another kind of comparison with others’ behavior)
5. Abnormality as highly consistent/inconsistent behavior (Involving making comparisons between both the actor and others, and between the actor and him/herself in different situations)
6. Abnormality as maladaptiveness or disability (Concerns about the (disabling) consequences for the actor)

Answers

The six main criteria to define normality and abnormality include statistical infrequency, personal distress, others' distress, unexpected behavior, highly consistent/inconsistent behavior, and maladaptiveness/disability.

1. Abnormality as statistical infrequency: This criterion defines abnormality based on behaviors or characteristics that deviate significantly from the statistical norm.

2. Abnormality as personal distress: This criterion focuses on the individual's subjective experience of distress or discomfort. It considers behaviors or experiences that cause significant emotional or psychological distress to the person as abnormal.

For instance, someone experiencing intense anxiety or depression may be considered abnormal based on personal distress.

3. Abnormality as others' distress: This criterion takes into account the impact of behavior on others. It considers behaviors that cause distress, harm, or disruption to others as abnormal.

For example, someone engaging in violent or aggressive behavior that harms others may be considered abnormal based on the distress caused to others.

4. Abnormality as unexpected behavior: This criterion defines abnormality based on behaviors that are considered atypical or unexpected in a given context or situation.

For instance, if someone starts laughing uncontrollably during a sad event, their behavior may be considered abnormal due to its unexpected nature.

5. Abnormality as highly consistent/inconsistent behavior: This criterion involves comparing an individual's behavior to both their own typical behavior and the behavior of others. Consistent or inconsistent patterns of behavior may be considered abnormal.

For example, if a person consistently engages in risky and impulsive behavior, it may be seen as abnormal compared to their own usually cautious behavior or the behavior of others in similar situations.

6. It considers behaviors that are maladaptive, causing difficulties in personal, social, or occupational areas. For instance, someone experiencing severe social anxiety that prevents them from forming relationships or attending school or work may be considered abnormal due to the disability it causes.

The medical model and classification systems used in physical illnesses have both value and limitations when applied to psychological disorders. They provide a structured framework for understanding and diagnosing psychological disorders, allowing for standardized assessment and treatment. However, they can oversimplify the complexity of psychological experiences and may lead to overpathologization or stigmatization.

To know more about abnormality, visit,

https://brainly.com/question/27999898

#SPJ4

1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]

Answers

The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Step 1: Find the critical points by setting the derivative equal to zero and solving for x.

() = 12 9 − 32 − 3

() = 27 − 96x² − 3x²

Setting the derivative equal to zero, we have:

27 − 96x² − 3x² = 0

-99x² + 27 = 0

x² = 27/99

x = ±√(27/99)

x ≈ ±0.183

Step 2: Evaluate the function at the critical points and endpoints.

() = 12 9 − 32 − 3

() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)

() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)

Step 3: Compare the values to determine the absolute maximum and minimum.

The absolute maximum occurs at x = 0 with a value of -3.

The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.

Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

Other Questions
17) A 5.0-Volt battery is connected to two long wires that are wired in parallel with one another. Wire "A" has a resistance of 12 Ohms and Wire "B" has a resistance of 30 Ohms. The two wires are each 1.74m long and parallel to one another so that the currents in them flow in the same direction. The separation of the two wires is 3.5cm. What is the current flowing in Wire "A" and Wire "B"? What is the magnetic force (both magnitude and direction) that Wire "B experiences due to Wire "A"? to complete all jobs. (a) What is the mean arrival rate in jobs per hour? (Round your answer to four decimal places.) per hour (b) What is the mean service rate in jobs per hour? (Round your answer to four decimal places.) per hour (c) What is the average number of jobs waiting for service? (Round your answer to four decimal places.) (d) What is the average time (in hours) a job waits before the welder can begin working on it? (Round your answer to two decimal places.) h (e) What is the average number of hours between when a job is received and when it is completed? (Round your answer to two decimal places.) h (f) What percentage of the time is Gubser's welder busy? (Round your answer to the nearest whole number.) Can an object have increasing speed while its acceleration is decreasing? if yes, support your answer with an example. Find the volume of radius 7 cm in diameter of 12 cm in 3.14 I need 2 poems with each at least 20 lines long about1st poem - Dream(Dreaming)2nd poem - sadnesshas to be with its own set of rules/guidelines (EX: ab, adad, adcadc, etc) A geothermal power plant uses dry steam at a temperature of 308 C and cooling water at a temperature of 23 C. What is the maximum % efficiency the plant can achieve converting the geothermal heat to electricity? Phillip Witt, president of Witt Input Devices, wishes to create a portfolio of local suppliers for his new line of keyboards. Suppose that Phillip is willing to use one local supplier and up to two more located in other territories within the country. This would reduce the probability of a "super-event" that might shut down all suppliers at the same time at least 2 weeks to 0.4%, but due to increased distance the annual costs for managing each of the distant suppliers would be $24,500 (still $16,000 for the local supplier). A total shutdown would cost the company approximately $470,000. He estimates the "unique-event" risk for any of the suppliers to be 5%. Assuming that the local supplier would be the first one chosen, how many suppliers should Witt Input Devices use? Find the EMV for alternatives using 1, 2, or 3 suppliers. EMV(1) = $ ___________________(Enter your response rounded to the nearest whole number.) Make a concept map regarding Suchman's 5 stagesof Illness about your illness behavior when you got feverrecently.Please undertsand and read the instructions clearly. Let's say that you are currently the head of a U.S. household that earns $20,000 per year. Let's also say that your neighbor earns $60,000 per year. Which of the following can we NOT conclude (is incorrect)?Group of answer choicesWhen the U.S. census bureau measures incomes (for income inequality measurement purposes), it does not include income from government transfer payments. This means that your $20,000 income most likely will be supplemented with government benefits.Despite your lower income, if you save more (in absolute dollars) than your neighbor each year until retirement, you will have gained more net wealth than your neighbor at retirement.There is currently income inequality between you and your neighbor. This means that your neighbor has more money (s)he can spend on groceries and other items.Income inequality and wealth inequality are the same. Your neighbor has more income, so he has more wealth also. ELAINE'S HOME IMPROVEMENT CENTER Balance Sheet December 31, 0000 Assets Total Assets. $134,500 Total Liabilities & Owner's Equity. $134,500 Blood is flowing through an artery of radius 1.49 mm at a rate of 4.51 cm/s. Determine the blood flow rate in cm/s. Input your answer in cm/s, using 3 significant figures." Jane just joined a group that makes hats for babies in the hospital. Two weeks ago they made 21 hats. Last week they made 29 hats. This week they made 12 hats. All these hats will be split evenly between 2 nearby hospitals. Jane works out that's 62 hats for each hospital. Does that sound about right? Anis is a teenage girl with a height of 160cm and a body weight of 42kg. Anis had been restricting her intake of food and sometimes using laxatives so that she could vomit her food out and prevent from gaining weight. She would feel extremely proud of herself if she observed a drop in her body weight. However, most of the time, she would feel that she is a worthless person as she couldnt even control her body weight. Often when looking into the mirror, she would see herself getting fattier and immediately engage in her diet planning.Please answer the questions below according to the case study above:What diagnosis of eating disorder fits Anis's condition? Justify why is it the diagnosis and not the other eating disorders. According to the passage, what was one effect of the Great Depression?New York was the American city most affected by the Depression.About half of all workers nationwide were unemployed by 1932.Nearly one hundred thousand banks had shut down three years into the Depression.The money gained from selling crops fell by $7 billion in three years time. pls help! Social and economic policies in authoritarian states did not always achieve their aims. Discuss with reference to one authoritarian state. Franco. which is a complex tissue as it consist of both parenchymatous and collenchymatous cells how was your stay? a hotel has 30 floors with 40 rooms per floor. the rooms on one side of the hotel face the water, while rooms on the other side face a golf course. there is an extra charge for the rooms with a water view. the hotel manager wants to survey 120 guests who stayed at the hotel during a convention about their overall satisfaction with the proper evolutionary ancestor arctic wolf 5 details bollet Completez Fill in the blanks with the names of the logical places. Questions1. Il y a beau coup de messes cette ___2. Le matin, nous quittons la ___ avec les enfants3. Tu Trouves un sac dans un grand ___ du Centre-ville 7. Identify the steps for administering an MDI using a spacer and the rationale for using a spacer. 8. Identify the steps administering a nebulizer treatment on a patient with COPD and Pneumonia? 9. Identify the more appropriate wall source for use with nebulizer treatments in a patient with COPD, oxygen or medical air. Provide a rationale for your decision. Steam Workshop Downloader