Can someone help? It’s not $1,300

Can Someone Help? Its Not $1,300

Answers

Answer 1

Answer: d 900

Step-by-step explanation:


Related Questions

Let A E Mmn (C), UE Mmm(C). If U is unitary, show that UA and A have the same singular values.

Answers

The singular values of UA and A are the same because a unitary matrix U preserves the singular values of a matrix, as demonstrated by the equation UA = US(V^ˣ A), where S is a diagonal matrix containing the singular values.

How can we show that UA and A have the same singular values when U is a unitary matrix?

To show that UA and A have the same singular values, we need to demonstrate that the singular values of UA are equal to the singular values of A when U is a unitary matrix.

Let A be a matrix of size m x n, and U be a unitary matrix of size m x m. The singular value decomposition (SVD) of A is given by A = USV^ˣ , where S is a diagonal matrix containing the singular values of A. The superscript ˣ  denotes the conjugate transpose.

Now consider UA. We can write UA as UA = (USV^ˣ )A = US(V^*A). Note that V^ˣ A is another matrix of the same size as A.

Since U is unitary, it preserves the singular values of a matrix. This means that the singular values of V^*A are the same as the singular values of A.

Therefore, the singular values of UA are equal to the singular values of A. This result holds true for any matrix A and any unitary matrix U.

In conclusion, if U is a unitary matrix, the singular values of UA and A are the same.

Learn more about singular values

brainly.com/question/30357013

#SPJ11



A standard juice box holds 8 fluid ounces.


b. For each container in part a , calculate the surface area to volume (cm² per floz) ratio. Use these ratios to decide which of your containers can be made for the lowest materials cost. What shape container would minimize this ratio, and would this container be the cheapest to produce? Explain your reasoning.

Answers

To determine which container can be made for the lowest materials cost, we need to calculate the surface area to volume ratio for each container and compare them. The container with the lowest ratio will require the least amount of material and therefore be the cheapest to produce. The shape of the container that minimizes this ratio is a sphere. This is because a sphere has the smallest surface area compared to its volume among all three-dimensional shapes, resulting in a lower surface area to volume ratio.

To calculate the surface area to volume ratio, we divide the surface area of the container by its volume. Let's consider different shapes for the container: a cube, a cylinder, and a sphere.

For a cube, the surface area is given by 6 times the square of the side length, while the volume is the cube of the side length. Therefore, the surface area to volume ratio for a cube is 6/side length.

For a cylinder, the surface area is the sum of the areas of the two circular bases and the lateral surface area, given by [tex]2πr^2 + 2πrh. The volume is πr^2h. Thus, the surface area to volume ratio for a cylinder is (2πr^2 + 2πrh)/πr^2h. 4πr^2, and the volume is (4/3)πr^3. Hence, the surface area to volume ratio for a sphere is 4/r.[/tex]

Comparing the ratios for each shape, we can observe that the sphere has the smallest ratio. This means that the sphere requires the least amount of material for a given volume, making it the cheapest to produce among the three shapes considered.

The reason behind the sphere's minimal surface area to volume ratio lies in its symmetry. The spherical shape allows for an efficient distribution of volume while minimizing the surface area. As a result, less material is needed to create a container with the same volume compared to other shapes like cubes or cylinders.

Learn more about concepts of surface area

brainly.com/question/32377388

#SPJ11



Find the coefficient of the x² term in each binomial expansion.

(3 x+4)³

Answers

The coefficient of the x² term in the binomial expansion of (3x + 4)³ is 27.

The binomial theorem gives a formula for expanding a binomial raised to a given positive integer power. The formula has been found to be valid for all positive integers, and it may be used to expand binomials of the form (a+b)ⁿ.

We have (3x + 4)³= (3x)³ + 3(3x)²(4) + 3(3x)(4)² + 4³

Expanding, we get 27x² + 108x + 128

The coefficient of the x² term is 27.

The coefficient of the x² term in the binomial expansion of (3x + 4)³ is 27.

Know more about binomial expansion here,

https://brainly.com/question/31363254

#SPJ11

Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. In other words, given two integer arrays val[1...n] and weight[1…n] which represent values and weights associated with n items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item or don’t pick it (0-1 property). Data: W = 10 Val = [60 100 120 40] Weight = [2 4 6 3]

Answers

The maximum total value that can be put in the knapsack is 220.

How to solve for the maximum value using programming language

def knapSack(W, weight, val, n):

   K = [[0 for w in range(W + 1)] for i in range(n + 1)]

   # Build table K[][] in bottom up manner

   for i in range(n + 1):

       for w in range(W + 1):

           if i == 0 or w == 0:

               K[i][w] = 0

           elif weight[i-1] <= w:

               K[i][w] = max(val[i-1] + K[i-1][w-weight[i-1]],  K[i-1][w])

           else:

               K[i][w] = K[i-1][w]

   return K[n][W]

# The weight and value arrays

val = [60, 100, 120, 40]

weight = [2, 4, 6, 3]

n = len(val)

W = 10

print(knapSack(W, weight, val, n))  # It will print 220

Read more on subsets here https://brainly.com/question/28705656

#SPJ4

With W = 10, Val = [60, 100, 120, 40], and Weight = [2, 4, 6, 3], the maximum value subset with the given constraints is 220.

To solve this problem, we can use the 0-1 Knapsack algorithm. The algorithm works as follows:

Create a 2D array, dp[n+1][W+1], where dp[i][j] represents the maximum value that can be obtained with items 1 to i and a knapsack capacity of j.

Initialize the first row and column of dp with 0 since with no items or no capacity, the maximum value is 0.

Iterate through the items from 1 to n. For each item, iterate through the capacity values from 1 to W.

If the weight of the current item (weight[i]) is less than or equal to the current capacity (j), we have two options:

a. Include the current item: dp[i][j] = val[i] + dp[i-1][j-weight[i]]

b. Exclude the current item: dp[i][j] = dp[i-1][j]

Take the maximum of the two options and assign it to dp[i][j].

The maximum value that can be obtained is dp[n][W].

In this case, with W = 10, Val = [60, 100, 120, 40], and Weight = [2, 4, 6, 3], the maximum value subset with the given constraints is 220.

Learn more about Knapsack algorithm here:

https://brainly.com/question/30432103

#SPJ11

Write log74x+2log72y as a single logarithm. a) (log74x)(2log72y) b) log148xy c) log78xy d) log716xy2

Answers

The expression log74x + 2log72y simplifies to log716xy^2. Answer: d) log716xy^2

To simplify the expression log74x + 2log72y, we can use the logarithmic property that states loga(b) + loga(c) = loga(bc). This means that we can combine the two logarithms with the same base (7) by multiplying their arguments:

log74x + 2log72y = log7(4x) + log7(2y^2)

Now we can use another logarithmic property that states nloga(b) = loga(b^n) to move the coefficients of the logarithms as exponents:

log7(4x) + log7(2y^2) = log7(4x) + log7(2^2y^2)

= log7(4x) + log7(4y^2)

Finally, we can apply the first logarithmic property again to combine the two logarithms into a single logarithm:

log7(4x) + log7(4y^2) = log7(4x * 4y^2)

= log7(16xy^2)

Therefore, the expression log74x + 2log72y simplifies to log716xy^2. Answer: d) log716xy^2

Learn more about logarithmic  here:

https://brainly.com/question/30226560

#SPJ11

Madeleine invests $12,000 at an interest rate of 5%, compounded continuously. (a) What is the instantaneous growth rate of the investment? (b) Find the amount of the investment after 5 years. (Round your answer to the nearest cent.) (c) If the investment was compounded only quarterly, what would be the amount after 5 years?

Answers

The instantaneous growth rate of the investment is 5%. After 5 years, the investment will amount to approximately $16,283.19 when compounded continuously. If compounded quarterly, the investment will amount to approximately $16,209.62 after 5 years.

The instantaneous growth rate of an investment represents the rate at which its value is increasing at any given moment. In this case, the interest rate is 5%, which means that the investment grows by 5% each year.

In the first step, to calculate the instantaneous growth rate, we simply take the given interest rate, which is 5%.

In the second step, to find the amount of the investment after 5 years when compounded continuously, we use the continuous compounding formula: A = P * e^(rt), where A is the final amount, P is the principal (initial investment), e is the base of the natural logarithm, r is the interest rate, and t is the time in years. Plugging in the values, we have A = 12000 * e^(0.05 * 5) ≈ $16,283.19.

In the third step, to find the amount of the investment after 5 years when compounded quarterly, we use the compound interest formula: A = P * (1 + r/n)^(nt), where n is the number of compounding periods per year. In this case, n is 4 since the investment is compounded quarterly. Plugging in the values, we have A = 12000 * (1 + 0.05/4)^(4 * 5) ≈ $16,209.62.

Learn more about: instantaneous growth rate

brainly.com/question/18501521

#SPJ11

Perform the exponentiation by hand. Then use a calculator to check your work. −6^2
−6^2 = ___ (Type an integer or a simplified fraction.)

Answers

Answer:

Step-by-step explanation:

Guys can you please help. I dont understand. Thank you. :))))

Lines AB and CD intersect at E. If the measure of angle AEC=5x-20 and the measure of angle BED=x+50, find, in degrees, the measure of angle CEB.

Answers

Answer: 112.5

Step-by-step explanation: When line AB and CD intersect at point E, angle AEC equals BED so you set them equal to each other and find what x is. 5x -20 = x + 50, solving for x, which gives you 17.5. Finding x will tell you what AEC and BED by plugging it in which is 67.5. Angle BED and BEC are supplementary angles which adds up to 180 degrees. So to find angle CEB, subtract 67.5 from 180 and you get 112.5 degrees.

Khalil made 5 bowls of fruit salad. He used 9.3 kilograms of melon in all. To the nearest tenth of a kilogram, how many kilograms of melon, on average, were in each bowl?

Answers

Answer:

I don't care

Step-by-step explanation:

because it doesn't pay your god dam bills

Define a relation R on the set J={0,1,3,4,5,6} as follows: For all x,y∈J,xRy⇔4∣x^2+y^2
a) Draw a directed graph of the relation R. (you may insert a picture of your work under the question). b) Is the relation R reflexive, symmetric, or transitive? Justify your answer using the elements of J.

Answers

b. The relation R is reflexive, symmetric, and transitive.

The relation R is reflexive because 4 divides x2 + x2 = 2x2 for any x in J.Because addition is commutative, if xRy holds, then yRx also holds. As a result, the relationship R is symmetric.It can be seen that if both xRy and yRz hold, then xRz also holds. As a result, the relation R is transitive.

a) Here is the directed graph representing the relation R on the set J={0,1,3,4,5,6}:

In this graph, there is a directed edge from x to y if and only if xRy. For example, there is a directed edge from 0 to 4 because 4 divides 0^2+4^2.

b) To determine if the relation R is reflexive, symmetric, or transitive, let's examine the elements of J.

Reflexive: A relation R is reflexive if every element of the set is related to itself. In this case, for every x in J, we need to check if xRx. Since 4 divides x^2 + x^2 = 2x^2 for all x in J, the relation R is reflexive.

Symmetric: A relation R is symmetric if for every x and y in J, if xRy, then yRx. We need to check if for every pair of elements (x, y) in J, if 4 divides x^2 + y^2, then 4 divides y^2 + x^2. Since addition is commutative, if xRy holds, then yRx holds as well. Therefore, the relation R is symmetric.

Transitive: A relation R is transitive if for every x, y, and z in J, if xRy and yRz, then xRz. We need to check if for every triple of elements (x, y, z) in J, if 4 divides x^2 + y^2 and 4 divides y^2 + z^2, then 4 divides x^2 + z^2. It can be observed that if both xRy and yRz hold, then xRz holds as well. Therefore, the relation R is transitive.

In summary, the relation R is reflexive, symmetric, and transitive.

Learn more about symmetric

https://brainly.com/question/31184447

#SPJ11

Use the first principle to determine f'(x) of the following functions: 6.1 f(x) = x² + cos x. 6.2 f(x)= x² + 4x - 7. (3) (3) Question 7 Use the appropriate differentiation techniques to determine the f'(x) of the following functions (simplify your answer as far as possible): 7.1 f(x)= (-x³-2x−²+5)(x−4+5x² - x - 9). 7.2 f(x) = (-x+¹)-¹. 7.3 f(x) = (-2x² - x)(-3x³-4x²). (4) (4) (4)

Answers

6.1 By using first principle,  f'(x) = 2x + sin(x).

6.2 The f'(x) of this function is f'(x)  = 2x + 4.

7.1 The f'(x) of this function  using product rule and chain rule is [tex]f'(x) = -3x⁵ + 35x⁴ - x³ + 63x² - 40x⁻³ + 5.[/tex]

7.2 The f'(x) of this function  is  f'(x) = [tex](x-1)^-²[/tex].

7.3 The f'(x) of this function is [tex]f'(x) = 24x⁴ + 30x³ + 5x²[/tex]

How to use Product and chain rule

We can use the first principle to find the derivative of f(x) = x² + cos(x) as follows:

[tex]f'(x) = lim(h- > 0) [f(x+h) - f(x)] / h\\= lim(h- > 0) [(x+h)² + cos(x+h) - (x² + cos(x))] / h\\= lim(h- > 0) [x² + 2xh + h² + cos(x+h) - x² - cos(x)] / h\\= lim(h- > 0) [2xh + h² + cos(x+h) - cos(x)] / h[/tex]

Then use L'Hopital's rule

[tex]= lim(h- > 0) [2x + h + sin(x+h) / 1]\\ f'(x)= 2x + sin(x)[/tex]

Find the derivative of f(x) = x² + 4x - 7 as follows:

[tex]f'(x) = lim(h- > 0) [f(x+h) - f(x)] / h\\= lim(h- > 0) [(x+h)² + 4(x+h) - 7 - (x² + 4x - 7)] / h\\= lim(h- > 0) [x² + 2xh + h² + 4x + 4h - 7 - x² - 4x + 7] / h\\= lim(h- > 0) [2xh + h² + 4h] / h[/tex]

= lim(h->0) [2x + h + 4] [canceling the h terms]

= 2x + 4

Therefore, f'(x) = 2x + 4.

Use the product rule and the chain rule to find the derivative of f(x) = (-[tex]x³-2x⁻²+5)(x-4+5x²-x-9)\\f'(x) = (-3x² + 4x⁻³)(x-4+5x²-x-9) + (-x³-2x⁻²+5)(1+10x-1)\\= (-3x² + 4x⁻³)(-x²+10x-12) - x³ - 2x⁻² + 5 + 10(-x³)\\= -3x⁵ - 5x⁴ + 40x⁴ - 4x³ + 30x³ + 60x² + 3x² - 40x⁻³\\= -3x⁵ + 35x⁴ - x³ + 63x² - 40x⁻³ + 5[/tex]

Therefore, [tex]f'(x) = -3x⁵ + 35x⁴ - x³ + 63x² - 40x⁻³ + 5.[/tex]

Use the chain rule to find the derivative of f(x) = (-x+¹)^-¹ as follows:

[tex]f'(x) = d/dx [(-x+¹)^-¹]\\= -1(-x+¹)^-² * d/dx (-x+¹)\\f'(x) = (x-1)^-²= (x-1)^-²[/tex]

For this function [tex]f(x) = (-2x² - x)(-3x³-4x²)[/tex]

Use the product rule to find the derivative of as follows:

[tex]f'(x) = (-2x² - x)(-12x² - 6x) + (-3x³ - 4x²)(-4x - 1)\\f'(x) = 24x⁴ + 30x³ + 5x²[/tex]

Learn more on Product rule on https://brainly.com/question/29198114

#SPJ4



Solve each equation by completing the square.

x²+8 x+6=0

Answers

The solutions to the equation x² + 8x + 6 = 0 are x = -4 + √10 and x = -4 - √10.

To solve the equation by completing the square, we follow these steps:

Move the constant term (6) to the other side of the equation:

x² + 8x = -6

Take half of the coefficient of the x term (8), square it, and add it to both sides of the equation:

x² + 8x + (8/2)² = -6 + (8/2)²

x² + 8x + 16 = -6 + 16

x² + 8x + 16 = 10

Rewrite the left side of the equation as a perfect square trinomial:

(x + 4)² = 10

Take the square root of both sides of the equation:

x + 4 = ±√10

Solve for x by subtracting 4 from both sides:

x = -4 ±√10

To learn more about perfect square trinomial, refer here:

https://brainly.com/question/30594377

#SPJ11

not sure of the answer for this one!!!!!!!!!!!!

Answers

Answer:

43

Step-by-step explanation:

3x+1+x+7=180

4x+8=180

4x=180-8

4x=172

x=172/4

x=43

Solve the equation: −10x−2(8x+5)=4(x−3)

Answers

The solution to the equation -10x - 2(8x + 5) = 4(x - 3) is x = 1/15.

To solve the equation: -10x - 2(8x + 5) = 4(x - 3), we can start by simplifying both sides of the equation:

-10x - 2(8x + 5) = 4(x - 3)

-10x - 16x - 10 = 4x - 12

Next, let's combine like terms on both sides of the equation:

-26x - 10 = 4x - 12

To isolate the variable x, we can move the constants to one side and the variables to the other side of the equation:

-26x - 4x = -12 + 10

-30x = -2

Finally, we can solve for x by dividing both sides of the equation by -30:

x = -2 / -30

x = 1/15

Know more about equation here:

https://brainly.com/question/29538993

#SPJ11

Find the solution of heat equation

du/dt = 9 d^2u/dx^3, such that u (0,t) = u(3,1)=0, u(x,0) = 5sin7πx/3

Answers

Answer:

To find the solution of the heat equation with the given boundary and initial conditions, we can use the method of separation of variables. Let's solve it step by step:

Step 1: Assume a separation of variables solution:

u(x, t) = X(x)T(t)

Step 2: Substitute the assumed solution into the heat equation:

X(x)T'(t) = 9X'''(x)T(t)

Step 3: Divide both sides of the equation by X(x)T(t):

T'(t) / T(t) = 9X'''(x) / X(x)

Step 4: Set both sides of the equation equal to a constant:

(1/T(t)) * T'(t) = (9/X(x)) * X'''(x) = -λ^2

Step 5: Solve the time-dependent equation:

T'(t) / T(t) = -λ^2

The solution to this ordinary differential equation for T(t) is:

T(t) = Ae^(-λ^2t)

Step 6: Solve the space-dependent equation:

X'''(x) = -λ^2X(x)

The general solution to this ordinary differential equation for X(x) is:

X(x) = B1e^(λx) + B2e^(-λx) + B3cos(λx) + B4sin(λx)

Step 7: Apply the boundary condition u(0, t) = 0:

X(0)T(t) = 0

B1 + B2 + B3 = 0

Step 8: Apply the boundary condition u(3, t) = 0:

X(3)T(t) = 0

B1e^(3λ) + B2e^(-3λ) + B3cos(3λ) + B4sin(3λ) = 0

Step 9: Apply the initial condition u(x, 0) = 5sin(7πx/3):

X(x)T(0) = 5sin(7πx/3)

(B1 + B2 + B3) * T(0) = 5sin(7πx/3)

Step 10: Since the boundary conditions lead to B1 + B2 + B3 = 0, we have:

B3 * T(0) = 5sin(7πx/3)

Step 11: Solve for B3 using the initial condition:

B3 = (5sin(7πx/3)) / T(0)

Step 12: Substitute B3 into the general solution for X(x):

X(x) = B1e^(λx) + B2e^(-λx) + (5sin(7πx/3)) / T(0) * sin(λx)

Step 13: Apply the boundary condition u(0, t) = 0:

X(0)T(t) = 0

B1 + B2 = 0

B1 = -B2

Step 14: Substitute B1 = -B2 into the general solution for X(x):

X(x) = -B2e^(λx) + B2e^(-λx) + (5sin(7πx/3)) / T(0) * sin(λx)

Step 15: Substitute T(t) = Ae^(-λ^2t) and simplify the solution:

u(x, t) = X(x)T(t)

u(x, t) = (-B2e^(λx) + B2e^(-λx) + (5sin(7πx

The general manager of a fast-food restaurant chain must select 6 restaurants from 8 for a promotional program. How many different possible ways can this selection be done? It is possible to select the six restaurants in different ways.

Answers

There are 28 different possible ways to select 6 restaurants from a total of 8 for the promotional program.

The problem states that the general manager of a fast-food restaurant chain needs to select 6 out of 8 restaurants for a promotional program. We need to find the number of different ways this selection can be done.

To solve this problem, we can use the concept of combinations. In combinations, the order of selection does not matter.

The formula to calculate the number of combinations is:

nCr = n! / (r! * (n - r)!)

where n is the total number of items to choose from, r is the number of items to be selected, and the exclamation mark (!) denotes factorial.

In this case, we have 8 restaurants to choose from, and we need to select 6. So we can calculate the number of different ways to select the 6 restaurants using the combination formula:

8C6 = 8! / (6! * (8 - 6)!)

Let's simplify this calculation step by step:

8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
6! = 6 * 5 * 4 * 3 * 2 * 1
(8 - 6)! = 2!

Now, let's substitute these values back into the formula:

8C6 = (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / ((6 * 5 * 4 * 3 * 2 * 1) * (2 * 1))

We can simplify this further:

8C6 = (8 * 7) / (2 * 1)

8C6 = 56 / 2

8C6 = 28

Learn more about combinations here:

https://brainly.com/question/4658834

#SPJ11

Consider a firm whose production function is q=(KL)

γ

Suppose that γ>1/2. Assume that (w,r)=(1,1). ** Part a (5 marks) Is the production function exhibiting increasing returns to scale/decreasing returns to scale? ** Part b (5 marks) Derive the long-run cost function C(q,γ). ** Part c (5 marks) Show that the long-run cost function is linear/strictly convex/strictly concave in q

Answers

γ > 1/2, (1-2γ)/γ < 0, which means the second derivative is negative. Therefore, the long-run cost function is strictly concave in q.

Part a: To determine whether the production function exhibits increasing returns to scale or decreasing returns to scale, we need to examine how changes in inputs affect output.

In general, a production function exhibits increasing returns to scale if doubling the inputs more than doubles the output, and it exhibits decreasing returns to scale if doubling the inputs less than doubles the output.

Given the production function q = (KL)^γ, where γ > 1/2, let's consider the effect of scaling the inputs by a factor of λ, where λ > 1.

When we scale the inputs by a factor of λ, we have K' = λK and L' = λL. Substituting these values into the production function, we get:

q' = (K'L')^γ

  = (λK)(λL)^γ

  = λ^γ * (KL)^γ

  = λ^γ * q

Since λ^γ > 1 (because γ > 1/2 and λ > 1), we can conclude that doubling the inputs (λ = 2) results in more than doubling the output. Therefore, the production function exhibits increasing returns to scale.

Part b: To derive the long-run cost function C(q, γ), we need to determine the cost of producing a given quantity q, taking into account the production function and input prices.

The cost function can be expressed as C(q) = wK + rL, where w is the wage rate and r is the rental rate.

In this case, we are given that (w, r) = (1, 1), so the cost function simplifies to C(q) = K + L.

Using the production function q = (KL)^γ, we can express L in terms of K and q as follows:

q = (KL)^γ

q^(1/γ) = KL

L = (q^(1/γ))/K

Substituting this expression for L into the cost function, we have:

C(q) = K + (q^(1/γ))/K

Therefore, the long-run cost function is C(q, γ) = K + (q^(1/γ))/K.

Part c: To determine whether the long-run cost function is linear, strictly convex, or strictly concave in q, we need to examine the second derivative of the cost function with respect to q.

Taking the second derivative of C(q, γ) with respect to q:

d^2C(q, γ)/[tex]dq^2 = d^2/dq^2[/tex][K + (q^(1/γ))/K]

              = d/dq [(1/γ)(q^((1-γ)/γ))/K]

              = (1/γ)((1-γ)/γ)(q^((1-2γ)/γ))/K^2

To know more about derivative visit:

brainly.com/question/29144258

#SPJ11

solve the Propagation of Error problems
have to report the volume as V = (7.5±0.2) x 102 c error/uncertainty was rounded to one digit and the mean/best-value was rou (the tens place).
I Now that you have had a brief refresher and some examples, it is your turn to
1. Show that for f(x,y)=x+y, or = √o+of
2. Show that for f(x,y)=x-y, or =
√o+a
3. Show that for f(x,y)=y-x, or = √σ+03
4. Show that for f(x,y,z)=xyz,
-+*+
5. Show that for f(x, y) =
6. Show that for f(x,y) = ?,
· √(x²+(73)*
+
7. Use the h's given in the first example to compute the mean, standard de error. Do this by making a table:
h(cm)
h-h(cm)

Answers

You can create a table with the given values h(cm) and calculate the corresponding values for h-h(cm) (difference from mean) and σ_h (standard deviation) using the above formulas.

To solve the propagation of error problems, we can follow these steps:

For f(x, y) = x + y:

To find the propagated uncertainty for the sum of two variables x and y, we can use the formula:

σ_f = sqrt(σ_x^2 + σ_y^2),

where σ_f is the propagated uncertainty for f(x, y), σ_x is the uncertainty in x, and σ_y is the uncertainty in y.

For f(x, y) = x - y:

To find the propagated uncertainty for the difference between two variables x and y, we can use the same formula:

σ_f = sqrt(σ_x^2 + σ_y^2).

For f(x, y) = y - x:

The propagated uncertainty for the difference between y and x will also be the same:

σ_f = sqrt(σ_x^2 + σ_y^2).

For f(x, y, z) = xyz:

To find the propagated uncertainty for the product of three variables x, y, and z, we can use the formula:

σ_f = sqrt((σ_x/x)^2 + (σ_y/y)^2 + (σ_z/z)^2) * |f(x, y, z)|,

where σ_f is the propagated uncertainty for f(x, y, z), σ_x, σ_y, and σ_z are the uncertainties in x, y, and z respectively, and |f(x, y, z)| is the absolute value of the function f(x, y, z).

For f(x, y) = √(x^2 + (7/3)y):

To find the propagated uncertainty for the function involving a square root, we can use the formula:

σ_f = (1/2) * (√(x^2 + (7/3)y)) * sqrt((2σ_x/x)^2 + (7/3)(σ_y/y)^2),

where σ_f is the propagated uncertainty for f(x, y), σ_x and σ_y are the uncertainties in x and y respectively.

For f(x, y) = x^2 + y^3:

To find the propagated uncertainty for a function involving powers, we need to use partial derivatives. The formula is:

σ_f = sqrt((∂f/∂x)^2 * σ_x^2 + (∂f/∂y)^2 * σ_y^2),

where ∂f/∂x and ∂f/∂y are the partial derivatives of f(x, y) with respect to x and y respectively, and σ_x and σ_y are the uncertainties in x and y.

To compute the mean and standard deviation:

If you have a set of values h_1, h_2, ..., h_n, where n is the number of values, you can calculate the mean (average) using the formula:

mean = (h_1 + h_2 + ... + h_n) / n.

To calculate the standard deviation, you can use the formula:

standard deviation = sqrt((1/n) * ((h_1 - mean)^2 + (h_2 - mean)^2 + ... + (h_n - mean)^2)).

You can create a table with the given values h(cm) and calculate the corresponding values for h-h(cm) (difference from mean) and σ_h (standard deviation) using the above formulas.

to learn more about partial derivatives.

https://brainly.com/question/28751547

#SPJ11

Problem 3 Is the set S= {(x, y): x ≥ 0, y ≤ R} a vector space? Problem 4 Is the set of all functions, f, such that f(0) = 0

Answers

Problem 3: The set S = {(x, y): x ≥ 0, y ≤ R} is not a vector space.

Problem 4: The set of all functions, f, such that f(0) = 0, is a vector space.

Problem 3: To determine if the set S = {(x, y): x ≥ 0, y ≤ R} is a vector space, we need to verify if it satisfies the properties of a vector space. However, the set S does not satisfy the closure under scalar multiplication. For example, if we take the element (x, y) ∈ S and multiply it by a negative scalar, the resulting vector will have a negative x-coordinate, which violates the condition x ≥ 0. Therefore, S fails to meet the closure property and is not a vector space.

Problem 4: The set of all functions, f, such that f(0) = 0, forms a vector space. To prove this, we need to demonstrate that it satisfies the vector space axioms. The set satisfies the closure property under addition and scalar multiplication since the sum of two functions with f(0) = 0 will also have f(0) = 0, and multiplying a function by a scalar will still satisfy f(0) = 0. Additionally, the set contains the zero function, where f(0) = 0 for all elements. It also satisfies the properties of associativity and distributivity. Therefore, the set of all functions with f(0) = 0 forms a vector space.

Learn more about: Vector spaces,

brainly.com/question/30531953

#SPJ11



Evaluate the expression if a=2, b=6 , and c=3 .

\frac{1}{2} c(b+a)

Answers

Substituting a = 2, b = 6, and c = 3 into the expression:

1

2

(

3

)

(

6

+

2

)

2

1

(3)(6+2)

Simplifying the expression:

1

2

(

3

)

(

8

)

=

12

2

1

(3)(8)=12

Therefore, when a = 2, b = 6, and c = 3, the expression

1

2

(

+

)

2

1

c(b+a) evaluates to 12.

To evaluate the expression

1

2

(

+

)

2

1

c(b+a) when a = 2, b = 6, and c = 3, we substitute these values into the expression and perform the necessary calculations.

First, we substitute a = 2, b = 6, and c = 3 into the expression:

1

2

(

3

)

(

6

+

2

)

2

1

(3)(6+2)

Next, we simplify the expression following the order of operations (PEMDAS/BODMAS):

Within the parentheses, we have 6 + 2, which equals 8. Substituting this result into the expression, we get:

1

2

(

3

)

(

8

)

2

1

(3)(8)

Next, we multiply 3 by 8, which equals 24:

1

2

(

24

)

2

1

(24)

Finally, we multiply 1/2 by 24, resulting in 12:

12

Therefore, when a = 2, b = 6, and c = 3, the expression

1

2

(

+

)

2

1

c(b+a) evaluates to 12.

Learn more about expression here:

brainly.com/question/14083225

#SPJ11

Find the standard matrix for the operator 7 defined by the formula
T(X1, X2, XaX) = (X) - X4, Xj+2X2, X3, X2, X-X)
and then compute 7(0, 0, 0, 0), 7(1,-2, 3,-4) by directly substituting in the formula and then by matrix multiplication.
[15:43, 6/6/2023] lailatun niqma: Find the standard matrix for the operator T defined by the formula
T(X1, X2, X3, X4) = (X1X4, X1 + 2x2, X3, X2, X1-X3)
and then compute 7(0, 0, 0, 0), 7(1,-2,3,-4) by directly substituting in the formula and then by matrix multiplication.

Answers

The result of computing 7(0, 0, 0, 0), 7(1, -2, 3, -4) using the formula is (0, 0, 0, 0, 0) and  (-4, -3, 3, -2, -2). The result of computing 7(0, 0, 0, 0) and 7(1, -2, 3, -4)  by matrix multiplication is  (0, 0, 0, 0, 0) and (-4, -3, 3, -2, -2).

The standard matrix for the operator T is given by:

[ 0 0 0 0 ]

[ 1 2 0 0 ]

[ 0 0 1 0 ]

[ 0 1 0 -1 ]

To compute 7(0, 0, 0, 0) using the formula, we substitute the values into the formula: T(0, 0, 0, 0) = (00, 0 + 20, 0, 0, 0-0) = (0, 0, 0, 0, 0).

To compute 7(1, -2, 3, -4) using the formula, we substitute the values into the formula: T(1, -2, 3, -4) = (1*-4, 1 + 2*(-2), 3, -2, 1-3) = (-4, -3, 3, -2, -2).

To compute 7(0, 0, 0, 0) by matrix multiplication, we multiply the standard matrix by the given vector:

[ 0 0 0 0 ] [ 0 ]

[ 1 2 0 0 ] x [ 0 ]

[ 0 0 1 0 ] [ 0 ]

[ 0 1 0 -1 ] [ 0 ]

= [ 0 ]

[ 0 ]

[ 0 ]

[ 0 ]

The result is the same as obtained from direct substitution, which is (0, 0, 0, 0, 0).

Similarly, to compute 7(1, -2, 3, -4) by matrix multiplication, we multiply the standard matrix by the given vector:

[ 0 0 0 0 ] [ 1 ]

[ 1 2 0 0 ] x [-2 ]

[ 0 0 1 0 ] [ 3 ]

[ 0 1 0 -1 ] [-4 ]

= [ -4 ]

[ -3 ]

[ 3 ]

[ -2 ]

The result is also the same as obtained from direct substitution, which is (-4, -3, 3, -2, -2).

Learn more about standard matrix here:

https://brainly.com/question/31040879

#SPJ11



Write an equation of each line in standard form with integer coefficients. y=7 x+0.4 .

Answers

The equation of the line y = 7x + 0.4 in standard form with integer coefficients is 70x - 10y = -4.

To write the equation of the line y = 7x + 0.4 in standard form with integer coefficients, we need to eliminate the decimal coefficient. Multiply both sides of the equation by 10 to remove the decimal, we obtain:

10y = 70x + 4

Now, rearrange the terms so that the equation is in the form Ax + By = C, where A, B, and C are integers:

-70x + 10y = 4

To ensure that the coefficients are integers, we can multiply the entire equation by -1:

70x - 10y = -4

To learn more about integer coefficients, refer here:

https://brainly.com/question/4928961

#SPJ11

en un poligono regular la suma de los angulos interiores y exteriores es de 2340.Calcule el número de diagonales de dicho polígono

Answers

Answer:

el número de diagonales del polígono regular con 13 lados es 65.

Step-by-step explanation:

La suma de los ángulos interiores de un polígono regular de n lados se calcula mediante la fórmula:

Suma de ángulos interiores = (n - 2) * 180 grados

La suma de los ángulos exteriores de cualquier polígono, incluido el polígono regular, siempre es igual a 360 grados.

Dado que la suma de los ángulos interiores y exteriores en este polígono regular es de 2340 grados, podemos establecer la siguiente ecuación:

(n - 2) * 180 + 360 = 2340

Resolvamos la ecuación:

(n - 2) * 180 = 2340 - 360

(n - 2) * 180 = 1980

n - 2 = 1980 / 180

n - 2 = 11

n = 11 + 2

n = 13

Por lo tanto, el número de lados del polígono regular es 13.

Para calcular el número de diagonales de dicho polígono, podemos utilizar la fórmula:

Número de diagonales = (n * (n - 3)) / 2

Sustituyendo el valor de n en la fórmula:

Número de diagonales = (13 * (13 - 3)) / 2

Número de diagonales = (13 * 10) / 2

Número de diagonales = 130 / 2

Número de diagonales = 65

Por lo tanto, el número de diagonales del polígono regular con 13 lados es 65.

Which organism (grass, prairie dog, ferret, or fox) do you think is a producer (does not depend on other organisms for its food)?

Answers

Answer: Grass is a producer

Step-by-step explanation:

The organism grass is a producer. We know this because it gets its energy (food) from the sun, therefore it is the correct answer.

What is the least-squares solution for the given inconsistent system of equations?
x+y=-1
x-3y=4
2y=5
(A) X= 0 1/3
(B) X= 17/6 1/3
(C) X= 13/7 -13/14
(D) = 3/2 0

Answers

Given the system of equations as: x + y = -1 -----(1)x - 3y = 4 ----(2)2y = 5 -----(3), the given system of equations has no least-squares solution which makes option (E) the correct choice.

Solve the above system of equations as follows:

x + y = -1 y = -x - 1

Substituting the value of y in the second equation, we have:

x - 3y = 4x - 3(2y) = 4x - 6 = 4x = 4 + 6 = 10x = 10/1 = 10

Solving for y in the first equation:

y = -x - 1y = -10 - 1 = -11

Substituting the value of x and y in the third equation:2y = 5y = 5/2 = 2.5

As we can see that the given system of equations is inconsistent as it doesn't have any common solution.

Thus, the given system of equations has no least-squares solution which makes option (E) the correct choice.

More on least-squares solution: https://brainly.com/question/30176124

#SPJ11

Find a particular solution to y ′′ −8y ′ +16y=−0.5e^ 4t/ t 2+1 . y p=?

Answers

The complete solution to the differential equation is y = y_c + y_p, where y_c represents the complementary solution.

The given differential equation is y″ - 8y' + 16y = -0.5e^(4t)/(t^2 + 1). To find the particular solution, we assume that it can be expressed as y_p = (At + B)e^(4t)/(t^2 + 1) + Ce^(4t)/(t^2 + 1).

Differentiating y_p with respect to t, we obtain y_p' and y_p''. Substituting these expressions into the given differential equation, we can solve for the coefficients A, B, and C. After solving the equation, we find that A = -0.0125, B = 0, and C = -0.5.

Thus, the particular solution is y_p = (-0.0125t - 0.5/(t^2 + 1))e^(4t). As a result, the differential equation's entire solution is y = y_c + y_p, where y_c represents the complementary solution.

The general form of the solution is y = C_1e^(4t) + C_2te^(4t) + (-0.0125t - 0.5/(t^2 + 1))e^(4t).

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11

Assume that the copying service in has been established at (x = 2, y = 2) Assume that each customer order represents an expenditure of approximately $10 Because convenience would be an important customer criterion, assume that A = 2. If we wish to open a competing store at location (x = 3, y = 2) but with twice the capacity of the existing copy center, How much market share would we expect to capture?

Answers

We would expect to capture 50% of the market share with the new competing store at location (x = 3, y = 2) with twice the capacity of the existing copy center.

To determine the market share we would expect to capture with the new competing store, we can use the gravity model of market share. The gravity model is commonly used to estimate the flow or interaction between two locations based on their distances and attractiveness.

In this case, the attractiveness of each location can be represented by the capacity of the copy center. Let's denote the capacity of the existing copy center as C1 = 1 (since it has the capacity of 1) and the capacity of the new competing store as C2 = 2 (twice the capacity).

The market share (MS) can be calculated using the following formula:

MS = (C1 * C2) / ((A * d^2) + (C1 * C2))

Where:

- A represents the attractiveness factor (convenience) = 2

- d represents the distance between the two locations (x = 2 to x = 3 in this case) = 1

Plugging in the values:

MS = (1 * 2) / ((2 * 1^2) + (1 * 2))

  = 2 / (2 + 2)

  = 2 / 4

  = 0.5

Learn more about market share

https://brainly.com/question/31462140

#SPJ11

The new competing store would capture approximately 2/3 (or 66.67%) of the market share.

To determine the market share that the new competing store at (x = 3, y = 2) would capture, we need to compare its attractiveness with the existing copy center located at (x = 2, y = 2).

b

Let's calculate the attractiveness of the existing copy center first:

Attractiveness of the existing copy center:

A = 2

Expenditure per customer order: $10

Next, let's calculate the attractiveness of the new competing store:

Attractiveness of the new competing store:

A' = 2 (same as the existing copy center)

Expenditure per customer order: $10 (same as the existing copy center)

Capacity of the new competing store: Twice the capacity of the existing copy center

Since the capacity of the new competing store is twice that of the existing copy center, we can consider that the new store can potentially capture twice as many customers.

Now, to calculate the market share captured by the new competing store, we need to compare the capacity of the existing copy center with the total capacity (existing + new store):

Market share captured by the new competing store = (Capacity of the new competing store) / (Total capacity)

Let's denote the capacity of the existing copy center as C and the capacity of the new competing store as C'.

Since the capacity of the new store is twice that of the existing copy center, we have:

C' = 2C

Total capacity = C + C'

Now, substituting the values:

C' = 2C

Total capacity = C + 2C = 3C

Market share captured by the new competing store = (C') / (Total capacity) = (2C) / (3C) = 2/3

Learn more about  capacity

https://brainly.com/question/33454758

#SPJ11

You have one type of chocolate that sells for $3.90/b and another type of chocolate that sells for $9.30/b. You would tike to have 10.8 lbs of a chocolate mixture that sells for $8.30/lb. How much of each chocolate will you need to obtain the desired mixture? You will need ______Ibs of the cheaper chocolate and____ Ibs of the expensive chocolate.

Answers

You will need 2 lbs of the cheaper chocolate and 8.8 lbs of the expensive chocolate to obtain the desired mixture.

Let's assume the amount of the cheaper chocolate is x lbs, and the amount of the expensive chocolate is y lbs.

According to the problem, the following conditions must be satisfied:

The total weight of the chocolate mixture is 10.8 lbs:

x + y = 10.8

The average price of the chocolate mixture is $8.30/lb:

(3.90x + 9.30y) / (x + y) = 8.30

To solve this system of equations, we can use the substitution or elimination method.

Let's use the substitution method:

From equation 1, we can rewrite it as y = 10.8 - x.

Substitute this value of y into equation 2:

(3.90x + 9.30(10.8 - x)) / (x + 10.8 - x) = 8.30

Simplifying the equation:

(3.90x + 100.44 - 9.30x) / 10.8 = 8.30

-5.40x + 100.44 = 8.30 * 10.8

-5.40x + 100.44 = 89.64

-5.40x = 89.64 - 100.44

-5.40x = -10.80

x = -10.80 / -5.40

x = 2

Substitute the value of x back into equation 1 to find y:

2 + y = 10.8

y = 10.8 - 2

y = 8.8

Therefore, you will need 2 lbs of the cheaper chocolate and 8.8 lbs of the expensive chocolate to obtain the desired mixture.

Learn more about Chocolate here

https://brainly.com/question/15074314

#SPJ11

If C. P = Rs480, S. P. = Rs 528, find profit and profit percent​

Answers

Answer:

Step-by-step explanation:

To find the profit and profit percentage, we need to know the cost price (C.P.) and the selling price (S.P.) of an item. In this case, the cost price is given as Rs480, and the selling price is given as Rs528.

The profit (P) can be calculated by subtracting the cost price from the selling price:

P = S.P. - C.P.

P = 528 - 480

P = 48

The profit percentage can be calculated using the following formula:

Profit Percentage = (Profit / Cost Price) * 100

Substituting the values, we get:

Profit Percentage = (48 / 480) * 100

Profit Percentage = 0.1 * 100

Profit Percentage = 10%

Therefore, the profit is Rs48 and the profit percentage is 10%.

rewrite the expression with a rational exponent as a radical expression. (1 point) five to the three fourths power all raised to the two thirds power

Answers

The expression "five to the three-fourths power raised to the two-thirds power" can be rewritten as a radical expression.

First, let's calculate the exponentiation inside the parentheses:

(5^(3/4))^2/3

To simplify this, we can use the property of exponentiation that states raising a power to another power involves multiplying the exponents:

5^((3/4) * (2/3))

When multiplying fractions, we multiply the numerators and denominators separately:

5^((3 * 2)/(4 * 3))

Simplifying further:

5^(6/12)

The numerator and denominator of the exponent can be divided by 6, which results in:

5^(1/2)

Now, let's express this in radical form. Since the exponent 1/2 represents the square root, we can write it as:

√5

Therefore, the expression "five to the three-fourths power raised to the two-thirds power" simplifies to the radical expression √5.

Learn more about expression here:

brainly.com/question/14083225

#SPJ11

Other Questions
What is -3/8 + 6/10 =You need common denominators before you can add or subtract a fraction If the cutoff wavelength for a particular material is 662 nm considering the photoelectric effect, what will be the maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 419 nm is used on the material? Express your answer in electron volts (eV). Most (if not all) countries have households that are considered poor. Generally, absolute poverty in industrialized countries such as the United States is not as severe as poverty in Third World countries. Examining poverty in the United States which of the following can you conclude?Group of answer choicesThe government in the United States determines the poverty threshold (the cutoff line below which households are considered poor). If the government increases the threshold considerably, then the poverty rate can increase, even if the overall household income level of the poor does not change. Having higher poverty thresholds in the United States compared to other countries can mean that the poverty rate in the United States is higher than in some less well-off countries.The government in the United States has not increased the poverty threshold (the cutoff line below which households are considered poor) for at least several decades. This means that over this time fewer households in the United States are considered poor, according to the definition.The poverty rate in the United States is less than 10% and has been steadily declining during the past four decades. This is primarily due to the success of government transfer programs.Poverty statistics in the United States are based on household incomes that are measured after government transfer payments and tax adjustments are already taken into account.In the United States only households who have more than one breadwinner can be considered poor. The breadwinner must either have a job or (s)he must be looking for a job. Breadwinners of households that do not have a job or are not looking for a job are eligible for government transfers and are not considered poor. CHOICE 1Explain the relationship of forgiveness, reconciliation, and forgetting, using examples with in-text citations from at least two authors from Book 2 to support your answerRetired Israeli Supreme Court Justice Moshe Bejski writes, "The Nazis survivors have been sentenced to bear their pain and sadness to the grave. Without forgetting there can be no forgiving" (Bejski 116). On the other hand, Native American nun Jose Hobday believes "Forgetting and forgiveness are of a piece. Every time you remember a wrong, you are asked to forgive it. No one, no memory, should have the power to hold us down, to deny us peace. Forgiving is the real power" (Hobday 175). The Dalai Lama believes that one must forgive "the person or persons who have committed atrocities against oneself and mankind. But this does not necessarily mean one should forget about the atrocities. In fact, one should be aware and remember these experiences so that efforts can be made to check the reoccurrence of such atrocities in the future" (Dalai Lama 129). Do you think it is possible to forgive and not forget? How would you differentiate forgiveness and reconciliation--finding peace with a tragedy and its perpetrators? Suppose a 373 cm long, 8.5 cm diameter solenoid has 1000 loops. #33% Part (a) Calculate the self-inductance of it in mil * Attempts Remain 33% Part (b) How much energy is stored in this inductor when 79,5 A of'current flows through it? Give your answer in J. What are the implications of not involving teacher unions inRe-entry Policy? Which stage of the therapeutic recreation process involves writing goals and objectives for clients? A.implementation B.assessment C.evaluation D.planning Which instrument focuses on self-reported perceptions of leisure-related freedom, interests, and barriers? A.the leisure diagnostics battery B.the leisure competence measure C.the CERT psych/R D.the IRF-PAI In the following case, which cognitive bias, if any, is it reasonable to conclude is occurring in Nora?Nora has never taken a philosophy class, but decides to take one for the first time. She reads the writings of famous philosophers in her class, and she also reads her professor's notes. However, she only reads them once and she does not understand what she reads. Nora immediately puts the blame on the readings, saying that the philosophers and her professor are confusing, unclear, and do not know how to write.Self-Serving biasNegativity BiasAvailability HeuristicOverconfidence EffectPlausible that there is no cognitive bias. A representative office is ? none of the options 2) is a small service facility staffed by parent bank personnel that is designed to assist MNC clients of the parent bank in dealings with the bank's correspondents. 3) is what lawyers' offices are called in Mexico. 4) is a small service facility staffed by correspondent bank personnel that is designed to assist MNC clients of the parent bank in dealings with the bank's correspondents. While an elevator of mass 827 kg moves downward, the tension in the supporting cable is a constant 7730 N Between 0 and 400 s, the elevator's desplacement is 5. 00 m downward. What is the elevator's speed at 4. 00 m/s Question 3 Not yet answered Points out of 1 Flag question What will happen if there is a decrease in the number of factories producing a good? Note: more than one answer is correct, and picking wrong answers has a penalty. Pick all and only the correct answers for full credit Select one or more: a Ob Demand for the good will increase. Demand for the good will decrease. c. Supply of the good will increase. d. Supply of the good will decrease. e. The price of the good will tend to rise. f. The price of the good will tend to fall. Og The quantity purchased of the good will tend to get larger. Oh. The quantity purchased of the good will tend to get smaller Question 4 Not yet answered Points out of 1 Flag question What will happen if there is a decrease in the number of potential consumers of a good? Note: more than one answer is correct, and picking wrong answers has a penalty. Pick all and only the correct answers for full credit. Select one or more: a. Demand for the good will increase. Demand for the good will decrease. Supply of the good will increase. Supply of the good will decrease. Db. Dc d. e. Of The price of the good will tend to rise. The price of the good will tend to fall. The quantity purchased of the good will tend to get larger. h. The quantity purchased of the good will tend to get smaller. Select the correct answer from each drop-down menu.Consider quadrilateral EFGH on the coordinate grid.Graph shows a quadrilateral plotted on a coordinate plane. The quadrilateral is at E(minus 4, 1), F(minus 1, 4), G(4, minus 1), and H(1, minus 4).In quadrilateral EFGH, sides FG and EH are because they . Sides EF and GHare . The area of quadrilateral EFGH is closest to square units.Reset Next Describe the process in which APCs can activateCD4+ T-Cells to include their sub-types with theirrespective functions; additionally, describe the wayCD8+ T-cells can be activated by somatic c" Required Information An ideal monatomic gas is taken through the cycle in the PV diagram P, srot- P, YL SL where -100, V2 -200, A-98.0 kPa and P2 - 230 kPa How much work is done on this gas per cycle? 1. Ernestine Shepherd is a wonder of late adulthood! What stepscan you take now to ensure being a healthy older adult? Patrick is a child in your class of three year old .Although patrick uses language appropriately and effectively to communicate with you and with other children you are concerned because he never joins the rest of the class in singing or movement activities .Instead of participating ,patrick just watches the children around him silently .when you take his hand to encourage him in movement activities ,patrick does not resist but he will return to watching the group as soon as possible. You discuss your concern with patrick's father and he is very suprised. He tells you that every day as they drive home . patrick sings to him all songs the class has sung during the school day..What is happening with patrick? If he knows the song ,why isn't he participating in class? Is he intimidated by the group ? Is he too self conscious? Or is he just caught up in watching his friends?. Diners are servod in a process with two resources. The processing times for the resources are 16 and 1.3 hours. Demand occurs at the rate 056 diners per hour. Instruction. Round your answer to one decimal place- What is the implied utilization (\%) of the first resource? Conner Corporation's adjusted trial balance included the following items:Accounts payable ($65,000). Accounts receivable ($45,000). Capital stock ($100,000), Cash ($50,000), Dividends ($10,000), Goodwill ($47,000), interest expense ($4,000). Interest payable ($2,000). Inventory ($32,000). Notes payable ($80,000). Prepaid expenses ( $5,000). Property. plant a equipment ($123,000). Retained earnings ($46,000). Rent expense ($18,000). Revenues ($101,000), and Salary expense ($60,000). Which of these accounts would be zero after applying the closing process? Qse the editor to formot youranswer __________________ involves always searching for new ways to improve work quality and performance. Lola is reading a text and wants to take notes that have a clear structure and sequence. Which strategy should she use?outliningjournalingpreviewinghighlighting Steam Workshop Downloader