A particle of charge 40.0MC moves.directly toward another particle of charge 80.0mC, which is held stationary. At the instant the distance between the two particles is 2.00m, the kinetic energy of the moving particle is 16.0J. What is the distance separating the two
particles when the moving particle is momentarily stopped?

Answers

Answer 1

The distance separating the two particles when the moving particle is momentarily stopped is infinity.

Charge of one particle = 40.0 MC

Charge of another particle = 80.0 mC

Kinetic energy of the moving particle = 16.0 J

The distance between the two particles when the kinetic energy of the moving particle is 16.0 J is 2.00 m. We need to find the distance separating the two particles when the moving particle is momentarily stopped.

Let, r be the distance between two particles and K.E be the kinetic energy of the moving particle

According to the Coulomb's law, the electrostatic force F between two charged particles is:F = k q1q2 / r2

Here,q1 and q2 are the charges on the two particles

r is the distance between the particles

k is the Coulomb's constant which is equal to 9 x 10^9 N.m^2/C^2

By the work-energy theorem, the change in kinetic energy of the moving particle is equal to the work done by the electrostatic force as the particle moves from infinity to distance r from the other particle i.e.,

K.E = Work done by the electrostatic force on the moving particle

W = k q1q2(1/r - 1/∞)

The work done by the electrostatic force on the moving particle when it is momentarily stopped is

K.E = W = k q1q2(1/r - 1/∞)0 = k q1q2(1/r - 1/∞)1/r = 1/∞r = ∞

Hence, the distance separating the two particles when the moving particle is momentarily stopped is infinity.

Learn more about distance https://brainly.com/question/26550516

#SPJ11


Related Questions

A 45 cm long wire has a radias of 2 mm, the resistivity of the metal 65x10- mis connected with a volts battery. How much current will pass through the wire? Express your answer in Amperes !

Answers

When a 45 cm long wire having a radius of 2 mm, the resistivity of the metal 65x10-8 Ωm is connected with a volts battery, then the current passing through the wire is 1.83 Amperes (A).

The resistance of a wire depends on its resistivity, length, and cross-sectional area.

The formula for the resistance of a wire is R = ρL/A

where,

R is the resistance

ρ is the resistivity

L is the length of the wire

A is the cross-sectional area of the wire.

The current through a wire is given by I = V/R

where, I is the current, V is the voltage, and R is the resistance.

R = ρL/AR = (ρL)/πr²

I = V/R = Vπr²/(ρL)

I = (1 V)π(0.002 m)²/(65×10⁻⁸ Ω·m)(0.45 m)

I = 1.83 A

Therefore, the current passing through the wire is 1.83 Amperes (A).

To learn more about current :

https://brainly.com/question/1100341

#SPJ11

3. [-/2 Points] DETAILS OSUNIPHYS1 3.4.P.048. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A particle has a constant acceleration of 7.0 m/s. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in Wesign) (a) If its initial velocity is 2.7 m/s, at what time (ins after t-0) is its displacement 6.0 m (b) What is its speed at that time (in m/s)? m/s Additional Materials Reading Submit Answer

Answers

The value of acceleration is 7.0 m/s². (a) We have to find out the time taken by the particle to reach 6.0 m displacement with the initial velocity of 2.7 m/s.(b) Find the velocity of the particle when it is displaced by 6 m.

We know that, acceleration is defined as the rate of change of velocity with time which is denoted as,a = Δv / ΔtHere, Δv = change in velocity and Δt = change in time. The particle has a constant acceleration of 7.0 m/s².We have to find out the time taken by the particle to reach 6.0 m displacement with the initial velocity of 2.7 m/s. (a)

We know that,

Displacement (s) = ut + 1/2 at²where

u = initial velocity,t = time taken to reach 6.0 m displacement.

a = acceleration,

ands = displacement

At s = 6.0 m,

u = 2.7 m/s

t= ?

a = 7.0 m/s²

We can find the time taken by substituting the above values in the formula,

6.0 m = 2.7 m/s × t + 1/2 × 7.0 m/s² × t²6t² + 5.4t - 12 = 0

On solving the above equation, we get,t = 0.935 s (approx)

Thus, the time taken by the particle to reach 6.0 m displacement with the initial velocity of 2.7 m/s is 0.935 s.

(b)We know that,Final velocity (v)² = u² + 2as

Here, u = 2.7 m/s,

s = 6.0 m, and

a = 7.0 m/s²

Therefore, the velocity of the particle when it is displaced by 6.0 m is 13 m/s.

learn more about displacement

https://brainly.com/question/14422259

#SPJ11

Question 4 Mars is a red-coloured, desert planet about half the size of Earth that Elon Musk would rather like to colonise. To be more precise, Mars has a mass of m≈ 6.40 × 10²3 kg and a radius of r≈ 3.40 × 10³ km. In answering the following questions, please assume that Mars and its satellites are spherical and have uniformly distributed mass. a. (2) Calculate the gravitational field strength at the surface of Mars. Mars has two moons (natural satellites) which orbit the planet by following approximately circular paths. One of these moons is Deimos, which has a mass of mp≈ 1.48 × 10¹5 kg and an orbital radius of RD 2.35 x 107 m. The average radius of Deimos is rp≈ 6.29 × 10³ m. b. (2) Calculate the gravitational force that Deimos would exert on a 2.50 kg object at its surface. c. (2) Calculate the magnitude of the gravitational force that Mars exerts on Deimos. d. (1) State the magnitude of the gravitational force that Deimos exerts on Mars. e. (2) Calculate the tangential speed of Deimos. f. (2) Mars' second moon is Phobos. If Phobos has an orbital radius of Rp = 9376 km, use proportion- ality and the known information for Deimos to determine Phobos' orbital period.

Answers

a. The gravitational field strength at the surface of Mars is 3.71 m/s^2.

b. The gravitational force that Deimos would exert on a 2.50 kg object at its surface is 1.17 × 10^10 N.

c. The magnitude of the gravitational force that Mars exerts on Deimos is 1.17 × 10^10 N.

d. The magnitude of the gravitational force that Deimos exerts on Mars is equal to the gravitational force that Mars exerts on Deimos, as determined in part c.

e. The tangential speed of Deimos is 9.90 m/s.

f. The orbital period of Phobos is 7.62 days.

a. To calculate the gravitational field strength at the surface of Mars, we can use the formula:

g = G * (Mars mass) / (Mars radius)^2

Plugging in the values, where G is the gravitational constant (6.67 × 10^-11 N m^2/kg^2), we get:

g = (6.67 × 10^-11 N m^2/kg^2) * (6.40 × 10^23 kg) / (3.40 × 10^6 m)^2

g= 3.71 m/s^2.

b. To calculate the gravitational force that Deimos would exert on a 2.50 kg object at its surface, we can use the formula:

F = G * (mass of Deimos) * (mass of object) / (distance between Deimos and the object)^2

Plugging in the values, where G is the gravitational constant, we get:

F = (6.67 × 10^-11 N m^2/kg^2) * (1.48 × 10^15 kg) * (2.50 kg) / (6.29 × 10^3 m)^2

F=1.17 × 10^10 N.

c. To calculate the magnitude of the gravitational force that Mars exerts on Deimos, we can use the same formula as in part b, but with the masses and distances reversed:

F = G * (mass of Mars) * (mass of Deimos) / (distance between Mars and Deimos)^2

Plugging in the values, we get:

F = (6.67 × 10^-11 N m^2/kg^2) * (6.40 × 10^23 kg) * (1.48 × 10^15 kg) / (2.35 × 10^7 m)^2

F= 1.17 × 10^10 N.

d. The magnitude of the gravitational force that Deimos exerts on Mars is the same as the force calculated in part c.

e. To calculate the tangential speed of Deimos, we can use the formula:

v = √(G * (mass of Mars) / (distance between Mars and Deimos))

Plugging in the values, we get:

v = √((6.67 × 10^-11 N m^2/kg^2) * (6.40 × 10^23 kg) / (2.35 × 10^7 m))

v= 9.90 m/s.

f. The orbital period of a moon is proportional to the square root of its orbital radius. This means that if the orbital radius of Phobos is 9376 km, which is 31.1 times greater than the orbital radius of Deimos, then the orbital period of Phobos will be √31.1 = 5.57 times greater than the orbital period of Deimos.

The orbital period of Deimos is 30.3 hours, so the orbital period of Phobos is 30.3 * 5.57 = 169.5 hours, or 7.62 days.

To learn more about orbital period: https://brainly.com/question/14494804

#SPJ11

An 47-turn coil has square loops measuring 0.377 m along a side and a resistance of 3.57 Ω. It is placed in a magnetic field that makes an angle of 41.5° with the plane of each loop. The magnitude of this field varies with time according to B = 1.53t3, where t is measured in seconds and B in teslas. What is the induced current in the coil at t = 3.41 s?

Answers

We can calculate the numerical value of the induced current at t = 3.41 s by substituting the values into the formula.

To determine the induced current in the coil, we can use Faraday's law of electromagnetic induction, which states that the induced electromotive force (EMF) in a coil is equal to the rate of change of magnetic flux through the coil.

The formula for the induced EMF is given by:

[tex]EMF = -N * dΦ/dt[/tex]

where EMF is the electromotive force, N is the number of turns in the coil, and dΦ/dt is the rate of change of magnetic flux.

To calculate the magnetic flux, we need to find the magnetic field passing through each loop and the area of each loop.

Given:

Number of turns: N = 47

Side length of the square loop: a = 0.377 m

Resistance of the coil: R = 3.57 Ω

Angle between the magnetic field and the plane of each loop: θ = 41.5°

Magnetic field as a function of time: B = 1.53t^3 (teslas)

Time: t = 3.41 s

Calculate the magnetic flux (Φ):

The magnetic flux through each loop can be calculated using the formula:

[tex]Φ = B * A * cos(θ)[/tex]

where A is the area of each loop.

The area of a square loop is given by:

[tex]A = a^2[/tex]

Substituting the given values:

[tex]A = (0.377 m)^2[/tex]

[tex]A ≈ 0.1421 m^2[/tex]

Now, we can calculate the magnetic flux:

[tex]Φ = (1.53t^3) * (0.1421 m^2) * cos(41.5°)[/tex]

Calculate the rate of change of magnetic flux (dΦ/dt):

To find the rate of change of magnetic flux, we differentiate the magnetic flux equation with respect to time:

[tex]dΦ/dt = (d/dt)[(1.53t^3) * (0.1421 m^2) * cos(41.5°)][/tex]

[tex]dΦ/dt = (1.53) * (3t^2) * (0.1421 m^2) * cos(41.5°)[/tex]

Calculate the induced EMF:

The induced EMF can be calculated using the formula:

[tex]EMF = -N * dΦ/dt[/tex]

Substituting the given values:

[tex]EMF = -47 * [(1.53) * (3(3.41 s)^2) * (0.1421 m^2) * cos(41.5°)][/tex]

Calculate the induced current:

Using Ohm's law, we can calculate the induced current in the coil:

I = EMF / R

Substituting the calculated EMF and the resistance:

[tex]I = [(-47) * (1.53) * (3(3.41 s)^2) * (0.1421 m^2) * cos(41.5°)] / 3.57 Ω[/tex]

Now, we can calculate the numerical value of the induced current at t = 3.41 s by substituting the values into the formula.

Learn more about  induced current from the given link

https://brainly.com/question/27605406

#SPJ11

When an atom of 215Po decays it releases an ________ particle, which is actually an atomic nucleus with ________ protons as well as ________ neutrons. The daughter atom has an atomic number of 82. The Name of the daughter atom is ________.

Answers

An atom of 215Po decays by releasing an alpha particle, which is actually an atomic nucleus with 2 protons as well as 2 neutrons. The daughter atom has an atomic number of 82. The name of the daughter atom is lead (Pb).

Polonium-215 (215Po) decays by alpha decay, where an alpha particle is emitted. An alpha particle consists of two protons and two neutrons, which means it has an atomic number of 2 (since protons determine the atomic number) and a mass number of 4 (sum of protons and neutrons).

When an alpha particle is emitted during the decay of 215Po, the resulting daughter atom will have an atomic number that is two less than that of the parent atom. Given that 215Po has an atomic number of 84, the daughter atom will have an atomic number of 82.

Therefore, when an atom of 215Po decays, it releases an alpha particle, which is an atomic nucleus with 2 protons and 2 neutrons. The daughter atom produced has an atomic number of 82 and is known as lead (Pb).

To learn more about nucleus, visit    

https://brainly.com/question/14368776

#SPJ11

Question 10. As the baseball is being caught, it's speed goals from 32 to 0 m/s in about 0.008 seconds. It's mass is 0.145 kg. ( Take the direction the baseball is thrown to be positive.) (a) what is the baseball acceleration in m/s2? ----m/s2 What is the baseball's acceleration in g's? -- -g What is the size of the force acting on it? ----N

Answers

The baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N.

The baseball's acceleration can be calculated using the given information. It can be expressed in m/s² and also converted to g's. The force acting on the baseball can also be determined. To calculate the baseball's acceleration, we can use the formula:

Acceleration = (Change in Velocity) / Time

Given that the initial velocity (u) is 32 m/s, the final velocity (v) is 0 m/s, and the time (t) is 0.008 seconds, we can calculate the acceleration.

Acceleration = (0 - 32) m/s / 0.008 s

Acceleration = -4000 m/s²

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity. To express the acceleration in g's, we can use the conversion factor:

1 g = 9.8 m/s²

Acceleration in g's = (-4000 m/s²) / (9.8 m/s² per g)

Acceleration in g's = -408.16 g

The negative sign signifies that the acceleration is directed opposite to the initial velocity and is decelerating.

To determine the size of the force acting on the baseball, we can use Newton's second law of motion:

Force = Mass × Acceleration

Given that the mass (m) of the baseball is 0.145 kg and the acceleration  is -4000 m/s², we can calculate the force.

Force = 0.145 kg × (-4000 m/s²)

Force = -580 N

Hence, the baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N. The negative sign indicates the direction of the force and acceleration in the opposite direction of the initial velocity.

Learn more about acceleration here:

https://brainly.com/question/30660316

#SPJ11

Maxwell calculated what the speed of light would have to be in order to obey which law?
A. Universal Law of Gravitation
B. Special theory of relativity C. Law of Conservation of Matter D. Law of Conservation of Energy

Answers

Maxwell calculated the speed of light to satisfy the requirements of B. the special theory of relativity.

In his work on electrodynamics, James Clerk Maxwell developed a set of equations that described the behavior of electromagnetic waves. These equations predicted the existence of electromagnetic waves that traveled at a particular speed.

Maxwell realized that the speed of these waves matched the speed of light, suggesting a fundamental connection between light and electromagnetism. This led to the development of the special theory of relativity by Albert Einstein, who recognized that the speed of light in a vacuum is constant and is the maximum attainable speed in the universe.

Therefore, Maxwell's calculations were crucial in formulating the theory of relativity, which revolutionized our understanding of space, time, and the fundamental laws of physics. Option B is the correct answer.

To learn more about physics click here:

brainly.com/question/28600368

#SPJ11

Consider the following distribution of objects: a 3.00-kg object with its center of gravity at (0,0) m, a 1.20-kg object at (0,2.00) m, and a 3.40-kg object at (5.00, 0) m. Where should a fourth object of mass 9.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0,0)?

Answers

The fourth object of mass 9.00 kg should be placed at approximately (2.155, 0) m to achieve a center of gravity.

To find the position where the fourth object of mass 9.00 kg should be placed for the center of gravity of the four-object arrangement to be at (0, 0), we need to consider the principle of moments.

The principle of moments states that the sum of the clockwise moments about any point must be equal to the sum of the counterclockwise moments about the same point for an object to be in equilibrium.

Let's denote the coordinates of the fourth object as (x, y). We can calculate the moments of each object with respect to the origin (0, 0) using the formula:

Moment = mass * distance from the origin

For the 3.00-kg object at (0, 0), the moment is:

Moment1 = 3.00 kg * 0 m = 0 kg·m

For the 1.20-kg object at (0, 2.00), the moment is:

Moment2 = 1.20 kg * 2.00 m = 2.40 kg·m

For the 3.40-kg object at (5.00, 0), the moment is:

Moment3 = 3.40 kg * 5.00 m = 17.00 kg·m

To achieve equilibrium, the sum of the clockwise moments must be equal to the sum of the counterclockwise moments. Since we have three counterclockwise moments (Moments1, 2, and 3), the clockwise moment from the fourth object (Moment4) should be equal to their sum:

Moment4 = Moment1 + Moment2 + Moment3

Moment4 = 0 kg·m + 2.40 kg·m + 17.00 kg·m

Moment4 = 19.40 kg·m

Now, let's calculate the distance (r) between the origin and the fourth object:

r = sqrt(x^2 + y^2)

To keep the center of gravity at (0, 0), the clockwise moment should be negative, meaning it should be placed opposite to the counterclockwise moments. Therefore, Moment4 = -19.40 kg·m.

We can rewrite Moment4 in terms of the fourth object's mass (M) and its distance from the origin (r):-19.40 kg·m = M * r

Given that the fourth object's mass is 9.00 kg, we can solve for r:-19.40 kg·m = 9.00 kg * r

r ≈ -2.155 m

Since the distance cannot be negative, we take the absolute value:

r ≈ 2.155 m

Therefore, the fourth object of mass 9.00 kg should be placed at approximately (2.155, 0) m to achieve a center of gravity at (0, 0) for the four-object arrangement.

Learn more about gravity from the given link

https://brainly.com/question/940770

#SPJ11

Two particles are fixed to an x-axis particle 1 of charge -2*10^-7c at x=21cm midway between the particles (at x=13.5cm) what is their net electric field in unit-vector notation?

Answers

Two particles are fixed to an x-axis particle 1 of charge -2*10^-7c at x=21cm midway between the particles (at x=13.5cm) their net electric field in unit-vector notation is E = (Ex)i.

The electric field (E) is a vector quantity and is given by the electric force (F) per unit charge (q). Electric fields are measured in units of Newtons per Coulomb (N/C). A negative charge would create an electric field vector that points towards it and vice versa, this implies that if there is more than one charge, the electric field vectors combine vectorially. The net electric field (Enet) at a point due to multiple charges can be found by adding up the individual electric fields at that point, the electric field created by the charges is expressed in unit vector notation.

To calculate the electric field at a point due to two charges fixed to the x-axis, particle 1 of charge -2*10^-7c at x=21cm and midway between the particles (at x=13.5cm), we can use Coulomb's law. This law states that the magnitude of the electric force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. We can calculate the magnitude of the electric field due to each particle at the point of interest and add them up to find the net electric field.

The unit vector notation for electric field is usually expressed in terms of i and j vectors, which represent the x and y directions respectively. The i and j vectors are unit vectors that represent a distance of one unit in the x and y directions respectively. In this problem, since the particles are fixed to the x-axis, the electric field vectors will only have an x-component. Therefore, the unit vector notation for the electric field in this case will be E = (Ex)i.

Learn more about Coulomb's law at:

https://brainly.com/question/506926

#SPJ11

A 5 kg object is dropped from rest in a medium that exerts a resistive force with magnitude proportional to the square of the speed. The magnitude of the resisting force is 1 N when the magnitude of the velocity is 2 m/s. Find the velocity v(t) of the object at any time t>0, and find its terminal velocity.

Answers

The velocity v(t) of the object at any time t>0 is given by v(t) = (2/3)t^(-1/2) m/s, and its terminal velocity is 0 m/s.

When an object is dropped in a medium that exerts a resistive force proportional to the square of the speed, we can use Newton's second law of motion to analyze its motion. The resistive force acting on the object can be written as Fr = -kv^2, where Fr is the resistive force, v is the velocity of the object, and k is a constant of proportionality.

In this case, we are given that the magnitude of the resisting force is 1 N when the magnitude of the velocity is 2 m/s. We can use this information to find the value of k. Plugging the given values into the equation, we have 1 = -k(2^2), which gives us k = 1/4.

To find the velocity v(t) of the object at any time t>0, we need to solve the differential equation that relates the acceleration to the velocity. We know that the acceleration a(t) is given by Newton's second law, which can be written as ma = -kv^2. Since the mass of the object is 5 kg, we have 5a = -k(v^2). Rearranging the equation, we get a = -(k/5)(v^2). Since acceleration is the derivative of velocity with respect to time, we have dv/dt = -(k/5)(v^2).

This is a separable differential equation that can be solved by separating the variables and integrating. We can rewrite the equation as v^(-2)dv = -(k/5)dt. Integrating both sides gives us ∫v^(-2)dv = -∫(k/5)dt. Simplifying, we have (-1/v) = -(k/5)t + C, where C is the constant of integration.

To find the value of C, we can use the initial condition that the velocity is 2 m/s at t = 0. Substituting these values into the equation, we have (-1/2) = 0 + C, which gives us C = -1/2.

Substituting the value of k = 1/4 and the value of C = -1/2 into the equation (-1/v) = -(k/5)t + C, we get (-1/v) = -(1/20)t - 1/2. Solving for v, we have v(t) = (2/3)t^(-1/2) m/s.

The terminal velocity is the maximum velocity that the object can reach, where the resistive force equals the gravitational force. In this case, when the object reaches terminal velocity, the net force acting on it is zero. Therefore, the magnitude of the gravitational force mg is equal to the magnitude of the resistive force Fr. We can write this as mg = kv^2, where m is the mass of the object, g is the acceleration due to gravity, and v is the terminal velocity.

In this problem, the mass of the object is 5 kg, and we can take the acceleration due to gravity as 9.8 m/s^2. Using the value of k = 1/4, we can solve for the terminal velocity. Substituting the values into the equation, we have 5(9.8) = (1/4)(v^2). Solving for v, we get v = 0 m/s.

The differential equation dv/dt = -(k/5)(v^2) can be solved by separating the variables and integrating both sides. The constant of integration can be determined using the initial condition. The terminal velocity is the maximum velocity reached when the resistive force equals the gravitational force acting on the object. In this case, the object's terminal velocity is 0 m/s, indicating that the resistive force completely balances the gravitational force, resulting in no further acceleration.

Learn more about velocity

brainly.com/question/30559316

#SPJ11

You place a crate of mass 37.6 kg on a frictionless 4.77-meter-long incline.
You release the crate from rest, and it begins to slide down, eventually
reaching the bottom 1.69 s after you released it. What is the angle of the
incline?

Answers

The angle of the incline is approximately 16.65 degrees.

To find the angle of the incline, we can use the kinematic equations and the principles of motion along an inclined plane.

Given:

Mass of the crate (m) = 37.6 kg

Length of the incline (s) = 4.77 m

Time taken to reach the bottom (t) = 1.69 s

Acceleration due to gravity (g) = 9.8 m/s²

Let's consider the motion of the crate along the incline.

Using the equation for displacement along an inclined plane:

s = (1/2) * g * t²

We can rearrange this equation to solve for g:

g = (2 * s) / t²

Substituting the given values:

g = (2 * 4.77 m) / (1.69 s)²

g ≈ 2.8 m/s²

The acceleration due to gravity (g) acting parallel to the incline is given by:

g_parallel = g * sin(θ)

where θ is the angle of the incline.

Rearranging the equation, we can solve for sin(θ):

sin(θ) = g_parallel / g

sin(θ) = g_parallel / 9.8 m/s²

Substituting the value of g_parallel:

sin(θ) = 2.8 m/s² / 9.8 m/s²

sin(θ) ≈ 0.2857

To find the angle θ, we can take the inverse sine (sin⁻¹) of both sides:

θ = sin⁻¹(0.2857)

θ ≈ 16.65°

Therefore, the angle of the incline is approximately 16.65 degrees.

Visit here to learn more about angle of the incline brainly.com/question/14108484

#SPJ11

A small particle called a muon is created at the top of the atmosphere when a high energy cosmic ray hits an air molecule. The muon is travelling at v = 2.95 x 108 m/s with respect to the Earth. If a person on the ground observes the muon move for 1.0 ms in his frame of reference, how much time has passed in the frame of reference of the moon?

Answers

The time passed in the frame of reference of the moon when a muon is observed on the ground is around 0.998 ms.

The theory of relativity is a theory developed by Albert Einstein, which deals with the relationship between space and time. In physics, it is a theory that describes the effect of gravity on the movement of the objects. The special theory of relativity deals with the physics of objects at a steady speed and describes the way space and time are viewed by observers in different states of motion. The general theory of relativity deals with the physics of accelerating objects and gravity. It describes gravity as an effect caused by the curvature of space-time by massive objects. The time dilation is one of the most significant consequences of the theory of relativity.

Now coming back to the question: A small particle called a muon is created at the top of the atmosphere when a high energy cosmic ray hits an air molecule. The muon is travelling at v = 2.95 x 108 m/s with respect to the Earth. If a person on the ground observes the muon move for 1.0 ms in his frame of reference.

The time dilation formula is as follows:[tex]\[{\Delta}t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}\]Where,\[{\Delta}t'\][/tex] is the time in the frame of reference of the moon[tex],\[\Delta t\][/tex] is the time in the frame of reference of the person on Earth, and c is the speed of light in vacuum. From the question,[tex]\[\Delta t = 1.0\text{ ms} = 1.0 \times 10^{-3} \text{ s}\][/tex]. The velocity of the muon,[tex]\[v = 2.95 \times 10^8\text{ m/s}\][/tex]. Hence,[tex]\[{\Delta}t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1.0 \times 10^{-3}}{\sqrt{1 - \frac{(2.95 \times 10^8)^2}{(3.0 \times 10^8)^2}}}\][/tex]. Calculating this,[tex]\[{\Delta}t' \approx 0.998\text{ ms}\].[/tex]

Let's learn more about muon:

https://brainly.com/question/12970071

#SPJ11

Suppose you have a grating with 8400 lines per cm, 1cm = 0.01 m. You send a beam of white light through it and observe the interference pattern on a
screen at a distance of L= 2.00 m from the grating.
The wavelength of white light is between 380.0 mm (violet) and 760.0 nm (red), inm = 10° m.
What is the separation d between two adjacent lines on the grating?

Answers

The separation between two adjacent lines on the grating is 1.1905 μm.

The grating with 8400 lines per cm, which is 1 cm equal to 0.01 m is given. Now, we need to find the separation between two adjacent lines on the grating and it is expressed as below;

d = 1/n,

where n = number of lines per unit length

Let's calculate the number of lines per unit length;

n = 8400 lines/cm = 8400/10000 lines/m

n = 0.84*103 lines/m

Now we need to find the wavelength of the white light. It is given that the wavelength of white light is between 380.0 nm (violet) and 760.0 nm (red). Hence, we can say that; λ = 380.0 nm to 760.0 nm

λ [tex]= 380.0*10^{-9m} to 760.0*10^{-9m}[/tex]

Let's calculate the separation between two adjacent lines on the grating by using the above-given formula.

Here, n = [tex]0.84*10^3[/tex] lines/m and λ = [tex]380.0*10^{-9m}[/tex];

d = 1/n = [tex]1/(0.84*10^3 lines/m)[/tex]

d = [tex]1.1905*10^{-6} m[/tex] = 1.1905 μm

Therefore, the separation between two adjacent lines on the grating is 1.1905 μm.

Learn more about " Separation between two adjacent line" refer to the link : https://brainly.com/question/29451443

#SPJ11

An energy of 0.17J is stored atop the metal sphere of
a Van de Graaff generator. A spark carrying 1.0 microcoulomb (10-6
C) discharges the sphere. Find the sphere's potential relative to
the ground.

Answers

The potential of the sphere relative to the ground is 170,000 volts.

When the spark discharges the sphere, it releases an electric charge of 1.0 microcoulomb (10-6 C). The potential energy stored in the sphere can be converted to electrical potential energy using the formula PE = qV, where PE is the potential energy, q is the charge, and V is the potential. Rearranging the formula, we have V = PE / q. Substituting the given values, the potential of the sphere relative to the ground is 0.17 J / (1.0 × 10-6 C) = 170,000 volts. Therefore, the potential of the metal sphere relative to the ground is 170,000 volts.

To learn more about charge , click here : https://brainly.com/question/13871705

#SPJ11

1)Gas in a container increases its pressure from 2.9 atm to 7.1 atm while keeping its volume constant. Find the work done (in J) by the gas if the volume is 4 liters.
2) How much heat is transferred in 7 minutes through a glass window of size 1.6 m by 1.6 m, if its thickness is 0.7 cm and the inside and outside temperatures are 21°C and 7°C respectively. Write your answer in MJ.
Thermal conductivity of glass = 0.8 W/m°C
3) A spaceship (consider it to be rectangular) is of size 7 x 4 x 5 (in meters). Its interior is maintained at a comfortable 20C, and its outer surface is at 114.5 K. The surface is aluminum. Calculate the rate of heat loss by radiation into space, if the temperature of outer space is 2.7 K. (This implies that the satellite is in the 'shade', i.e. not exposed to direct sunlight).
Emissivity of Al = 0.11 , Stefan constant = 5.669 x 10-8 W/m2K4

Answers

1) In this scenario, the gas is contained within a container and its pressure increases from 2.9 atm to 7.1 atm while the volume remains constant at 4 liters.

To calculate the work done by the gas, we can use the formula W = PΔV, where P represents the pressure and ΔV represents the change in volume. Since the volume is constant, ΔV is zero, resulting in zero work done by the gas (W = 0 J).

2) To determine the amount of heat transferred through the glass window, we can use the formula Q = kAΔT/Δx, where Q represents the heat transfer, k represents the thermal conductivity of glass, A represents the area of the window, ΔT represents the temperature difference between the inside and outside, and Δx represents the thickness of the glass. Plugging in the given values, we have Q = (0.8 W/m°C)(1.6 m)(1.6 m)(21°C - 7°C)/(0.007 m) = 43.2 MJ. Therefore, approximately 43.2 MJ of heat is transferred through the glass window in 7 minutes.

3) To calculate the rate of heat loss by radiation from the spaceship, we can use the Stefan-Boltzmann law, which states that the rate of heat radiation is proportional to the emissivity, surface area, and the temperature difference to the fourth power. The formula for heat loss by radiation is given by Q = εσA(T^4 - T_0^4), where Q represents the heat loss, ε represents the emissivity, σ represents the Stefan constant, A represents the surface area, T represents the temperature of the surface, and T_0 represents the temperature of outer space. Plugging in the given values, we have Q = (0.11)(5.669 x 10^-8 W/m^2K^4)(7 m)(4 m)(T^4 - 2.7^4). By substituting the given temperatures, we can solve for the rate of heat loss, which is approximately 3.99 W.

the work done by the gas is zero since the volume is constant. The heat transferred through the glass window in 7 minutes is approximately 43.2 MJ. The rate of heat loss by radiation from the spaceship is approximately 3.99 W.

To know more about work done  , visit:- brainly.com/question/32263955

#SPJ11

What is the arc length travelled by the pointer on a record
player if the record spun for 400 s at an angular velocity of
0.005236 rad/s? radius is 0.40 cm

Answers

To summarize,The arc length traveled by the pointer on a record player can be calculated using the formula s = rθ, where s is the arc length, r is the radius, and θ is the angular displacement. Given that the record spins for 400 s at an angular velocity of 0.005236 rad/s and a radius of 0.40 cm, we can calculate the arc length to be approximately 8.35 cm.

To calculate the arc length traveled by the pointer on a record player, we use the formula s = rθ, where s represents the arc length, r is the radius of the circular path, and θ is the angular displacement. Given that the record spins for 400 s at an angular velocity of 0.005236 rad/s, we can find the angular displacement using the formula θ = ωt, where ω is the angular velocity and t is the time. Substituting the given values, we get θ = 0.005236 rad/s × 400 s = 2.0944 rad.

Now, we can calculate the arc length by substituting the radius (0.40 cm) and angular displacement (2.0944 rad) into the formula s = rθ: s = 0.40 cm × 2.0944 rad ≈ 0.8376 cm. Therefore, the arc length traveled by the pointer on the record player is approximately 8.35 cm.

learn more about arc length here:

https://brainly.com/question/31762064

#SPJ11

A small block of mass M is placed halfway up on the inside of a frictionless, circular loop of radius R, as shown. The size of the block is very small compared to the radius of the loop. Determine an expression for the minimum downward speed v min

with which the block must be released in order to guarantee that it will make a full circle. Incorrect

Answers

The  block must be released with vmin = √(2gR/5) in order to guarantee that it will make a full circle.

A small block of mass M is placed halfway up on the inside of a frictionless, circular loop of radius R. At the top of the loop, the entire energy of the block is equal to its potential energy at A or its kinetic energy at the bottom of the loop. Thus, mgh = 1/2mv²+mg2Rg = v²/2v = √(2gR). Let  Minimum velocity required to just complete the circle = v1.Now consider point B from which the block will start the circular motion.

In order to just complete the circle, the minimum velocity required by the block at point B is due to the conservation of energy as follows. v1²/2 = mgh - mg3Rg/2v1²/2 = mg(R - 3R/2)R = 5v1²/2g⇒ v1 = √(2gR/5). Minimum velocity required at B to just complete the circle = v1 = √(2gR/5).

Let's learn more about frictionless:

https://brainly.com/question/30854343

#SPJ11

A guitar string is vibrating at its 2nd overtone or 3rd fundamental mode of vibration. The note produced by the string is 587.33 Hz. The speed of the wave on the string is 350 m/s. What is the length of the string? 0.596 m 0.894 m 111 m 1.68 m

Answers

The length of the string is 0.894 m.

To find the length of the string, given that a guitar string is vibrating at its 2nd overtone or 3rd fundamental mode of vibration and the note produced by the string is 587.33 Hz and that the speed of the wave on the string is 350 m/s, we will use the formula;Speed = wavelength x frequency

For a string with fixed ends, the fundamental frequency is given by;f = (nv/2L)where n = 1, 2, 3...L = length of the string v = speed of wave on the string

The second overtone or third fundamental mode means that n = 3L = (nv/2f) => L = (3v/2f)Substituting the given values;L = (3 × 350)/(2 × 587.33)L = 0.894 m.Therefore, the length of the string is 0.894 m. Therefore, the option that correctly answers the question is 0.894 m.

For further information on Strings visit :

https://brainly.com/question/17034759

#SPJ11

The length of the guitar string when it's vibrating at its 2nd overtone or 3rd fundamental mode of vibration is 0.596 m.

The fundamental frequency of a string depends on its length and speed. The equation for the frequency of a string with length L and wave speed v is f = v/2L where f is the frequency in hertz, v is wave speed in meters per second, and L is length in meters.

The string is vibrating at the 2nd overtone or 3rd fundamental mode, which means there are 3 nodes and 2 antinodes. In this case, the frequency is given as 587.33 Hz and the wave speed is 350 m/s.

Therefore, the length of the string can be found using the equation f = v/2L, which can be rearranged to give L = v/2f.

Substituting in the given values, we get:

L = 350/(2 x 587.33) = 0.298 m

Since there are three segments of the string, the length of each segment is 0.298 m / 3 = 0.099 m. So the total length of the string is L = 0.099 m x 2 + 0.298 m = 0.596 m.

The length of the guitar string when it's vibrating at its 2nd overtone or 3rd fundamental mode of vibration is 0.596 m.

Learn more about frequency:

https://brainly.com/question/13552044

#SPJ11

The current in an RL circuit drops from 1.2 A to 13 mA
in the first second following removal of the battery from the
circuit. If L is 11 H, find the resistance R in
the circuit.

Answers

We can solve this equation 0.013 - ln(1.2) = 1.2 * e^(-(R/11)) numerically to find the value of resistance R using methods like iteration or numerical solvers. Unfortunately, it is not possible to find the exact value of R analytically.

In an RL circuit, the rate of change of current with respect to time is given by:

di/dt = - (R/L) * i,

where i is the current and R is the resistance.

Given:

Initial current (i_0) = 1.2 A

Final current (i_f) = 13 mA = 0.013 A

Time (t) = 1 second

Inductance (L) = 11 H

We can integrate both sides of the equation to solve for R.

∫(di/i) = - ∫((R/L) * dt)

Integrating both sides, we get:

ln(i) = - (R/L) * t + C,

where C is the constant of integration.

Using the initial condition i = i_0 when t = 0, we can determine the value of C.

ln(i_0) = - (R/L) * 0 + C

ln(i_0) = C

Therefore, the equation becomes:

ln(i) = - (R/L) * t + ln(i_0)

To find R, we need to substitute the given values into the equation and solve for R when i = i_f and t = 1 second.

ln(i_f) = - (R/L) * 1 + ln(i_0)

Taking the exponential of both sides:

i_f = i_0 * e^(-(R/L)) + ln(i_0)

Substituting the given values:

0.013 = 1.2 * e^(-(R/11)) + ln(1.2)

Simplifying the equation:

0.013 - ln(1.2) = 1.2 * e^(-(R/11))

Now, we can solve this equation numerically to find the value of R using methods like iteration or numerical solvers. Unfortunately, it is not possible to find the exact value of R analytically.

Learn more about resistance

https://brainly.com/question/29427458

#SPJ11

2. Tides+Gravity (32 points): a. At what distance would the Moon have to be for you to weigh 0.01% less when it is directly overhead? [Hint: refer to your homework solutions). b. How high would typical ocean tide heights be if the Moon were that close? c. Calculate the Moon's orbital period at the distance you found in part a. d. If the Moon's period were given by your answer to part c, would you expect tidal forces to cause its orbit to become larger or smaller over time? Why?

Answers

a. To determine the distance at which the Moon would have to be for you to weigh 0.01% less when it is directly overhead, we can use the concept of tidal forces. Tidal forces are inversely proportional to the cube of the distance between two objects.

Let's assume your weight when the Moon is not directly overhead is W. To calculate the distance (d) at which you would weigh 0.01% less, we can use the formula:

W - 0.0001W = (GMm)/d^2

Where:

G is the gravitational constant (6.67430 × 10^-11 m^3 kg^-1 s^-2)

M is the mass of the Moon (7.349 × 10^22 kg)

m is your mass (assumed to be constant)

d is the distance between you and the Moon

Simplifying the equation:

0.9999W = (GMm)/d^2

d^2 = (GMm)/(0.9999W)

d = sqrt((GMm)/(0.9999W))

Substituting the appropriate values and using the fact that your mass (m) cancels out, we can calculate the distance (d).

b. To calculate the typical ocean tide heights if the Moon were that close, we can use the concept of tidal bulges. Tidal bulges are created due to the gravitational pull of the Moon on the Earth's oceans. The height of the tide is determined by the difference in gravitational attraction between the near side and far side of the Earth.

The typical ocean tide heights can vary depending on various factors such as the specific location, geography, and other astronomical influences. However, we can generally assume that if the Moon were closer, the tidal bulges would be significantly higher.

c. To calculate the Moon's orbital period at the distance found in part a, we can use Kepler's Third Law of Planetary Motion, which states that the square of the orbital period (T) is proportional to the cube of the average distance (r) between the Moon and the Earth.

T^2 ∝ r^3

Since we found the new distance (d) in part a, we can set up the following proportion:

(T_new)^2 / (T_earth)^2 = (d_new)^3 / (d_earth)^3

Solving for T_new:

T_new = T_earth * sqrt((d_new)^3 / (d_earth)^3)

Where T_earth is the current orbital period of the Moon (approximately 27.3 days).

d. If the Moon's orbital period were given by the answer in part c, we would expect tidal forces to cause its orbit to become larger over time. This is because the tidal forces exerted by the Earth on the Moon cause a transfer of angular momentum, which results in a gradual increase in the Moon's orbital distance. This phenomenon is known as tidal acceleration.

To know more about Moon's orbital period click this link -

brainly.com/question/9324333

#SPJ11

Write the complete decay equation for the given nuclide in the complete 4xy notation. Refer to the periodic table for values of Z. A decay of 210 Po, the isotope of polonium in the decay series of 238U that was discovered by the Curies.

Answers

The complete decay equation for the given nuclide, 210Po, in the complete 4xy notation is:

210Po → 206Pb + 4He

Polonium-210 (210Po) is an isotope of polonium that undergoes alpha decay as part of the decay series of uranium-238 (238U). In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus of the parent atom.

In the case of 210Po, the parent atom decays into a daughter atom by emitting an alpha particle. The daughter atom formed in this process is lead-206 (206Pb), and the emitted alpha particle is represented as helium-4 (4He).

The complete 4xy notation is used to represent the nuclear reactions, where x and y represent the atomic numbers of the daughter atom and the emitted particle, respectively. In this case, the complete decay equation can be written as:

210Po → 206Pb + 4He

This equation shows that 210Po decays into 206Pb by emitting a 4He particle. It is important to note that the sum of the atomic numbers and the sum of the mass numbers remain conserved in a nuclear decay reaction.

Learn more about decay

brainly.com/question/32239385

#SPJ11

5. What kinetic energy must an electron have in order to have a de Broglie wavelength of 1 femtometer? 18pts) 6. The average temperature of a blackhole is 1.4 x 10-14K. Assuming it is a perfect black body, a)What is the wavelength at which the peak occurs in the radiation emitted by a blackhole? 16pts b)What is the power per area emitted by a blackhole? [6pts!

Answers

5. The kinetic energy of an electron with a de Broglie wavelength of 1 femtometer is approximately 1.097 x 10^-16 J.

6. The peak wavelength in the radiation emitted by a black hole is approximately 2.07 x 10^-11 meters, with a power per unit area of approximately 2.53 x 10^-62 W/m^2.

5. To determine the kinetic energy of an electron with a de Broglie wavelength of 1 femtometer, we can use the de Broglie wavelength equation:

λ = h / p

where λ is the wavelength, h is the Planck's constant (approximately 6.626 x 10^-34 J·s), and p is the momentum of the electron.

Since the momentum of an electron is given by:

p = √(2mE)

where m is the mass of the electron (approximately 9.11 x 10^-31 kg) and E is the kinetic energy of the electron, we can rearrange the equations and substitute the values to solve for E:

λ = h / √(2mE)

E = h^2 / (2mλ^2)

E = (6.626 x 10^-34 J·s)^2 / (2 * 9.11 x 10^-31 kg * (1 x 10^-15 m)^2)

E ≈ 1.097 x 10^-16 J

6a.

The wavelength at which the peak occurs in the radiation emitted by a black hole can be calculated using Wien's displacement law:

λpeak = (2.898 x 10^-3 m·K) / T

where λpeak is the peak wavelength, T is the temperature of the black hole in Kelvin, and 2.898 x 10^-3 m·K is Wien's constant.

λpeak = (2.898 x 10^-3 m·K) / (1.4 x 10^-14 K)

λpeak ≈ 2.07 x 10^-11 m

6b.

The power per unit area emitted by a black hole can be calculated using the Stefan-Boltzmann law:

P/A = σT^4

where P/A is the power per unit area, σ is the Stefan-Boltzmann constant (approximately 5.67 x 10^-8 W/(m^2·K^4)), and T is the temperature of the black hole in Kelvin.

P/A = (5.67 x 10^-8 W/(m^2·K^4)) * (1.4 x 10^-14 K)^4

P/A ≈ 2.53 x 10^-62 W/m^2

To learn more about Stefan-Boltzmann law: https://brainly.com/question/30763196

#SPJ11

Atan air show the tirectly toward the stands at a speed of 1100 / min 140 on a day when the down to what Frequency received by the bar (h) What frequency in re do they receive as the plane files directly away from them

Answers

 At an air show a jet flies directly toward the stands at a speed of 1100 / min emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s,  frequency received by the observers when the jet flies directly toward the stands is approximately 3326 Hz. b)  the frequency received is approximately 3703 Hz.

(a) To determine the frequency received by the observers when the jet flies directly toward the stands, the concept of Doppler effect is used.

The formula for the apparent frequency observed (f') when a source is moving towards an observer is given by:

f' = (v + v₀) / (v + [tex]v_s[/tex]) × f

Where:

f' is the observed frequency

v is the speed of sound

v₀ is the velocity of the observer

[tex]v_s[/tex]is the velocity of the source

f is the emitted frequency

In this case, the speed of sound (v) is 342 m/s, the velocity of the observer (v₀) is 0 (as they are stationary), the velocity of the source ([tex]v_s[/tex]) is 1100 m/min (which needs to be converted to m/s), and the emitted frequency (f) is 3500 Hz.

Converting the velocity of the source to m/s:

1100 m/min = 1100 / 60 m/s ≈ 18.33 m/s

Now,  the observed frequency (f'):

f' = (v + v₀) / (v + v_s) × f

= (342 m/s + 0 m/s) / (342 m/s + 18.33 m/s) × 3500 Hz

Calculating the value:

f' ≈ (342 m/s / 360.33 m/s) × 3500 Hz

≈ 0.949 × 3500 Hz

≈ 3326 Hz

Therefore, the frequency received by the observers when the jet flies directly toward the stands is approximately 3326 Hz.

(b) When the plane flies directly away from the observers, the formula for the apparent frequency observed (f') is slightly different:

f' = (v - v₀) / (v - [tex]v_s[/tex]) × f

Using the same values as before, the observed frequency (f') when the plane flies directly away:

f' = (v - v₀) / (v - [tex]v_s[/tex] × f

= (342 m/s - 0 m/s) / (342 m/s - 18.33 m/s) × 3500 Hz

Calculating the value:

f' ≈ (342 m/s / 323.67 m/s) × 3500 Hz

≈ 1.058 × 3500 Hz

≈ 3703 Hz

Therefore, the frequency = is approximately 3703 Hz.

Learn more about the frequency calculation here.

https://brainly.com/question/12993780

#SPJ4

complete question is below

a) At an air show a jet flies directly toward the stands at a speed of 1100 / min emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?

7 Part 3 of 3 166 points eBook Hint Pant References ! Required information An arrangement of two pulleys, as shown in the figure, is used to lift a 54.8 kg crate a distance of 2.96 m above the starting point. Assume the pulleys and rope are ideal and that all rope sections are essentially vertical Pkg where P 54.8. What length of rope must be pulled to lift the crate 2.96 m?

Answers

The length of the rope that must be pulled to lift the crate 2.96 m when an arrangement of two pulleys is used to lift a 54.8 kg crate a distance of 2.96 m above the starting point can be calculated as follows:The arrangement of two pulleys shown in the figure can be considered as a combination of two sets of pulleys, each having a single movable pulley and a fixed pulley.

In this arrangement, the rope passes through two sets of pulleys, such that each section of the rope supports half of the weight of the load.

The tension in the rope supporting the load is equal to the weight of the load, which is given by T = m × g, where m = 54.8 kg is the mass of the crate and g = 9.81 m/s² is the acceleration due to gravity.

Hence, the tension in each section of the rope supporting the load is equal to T/2 = (m × g)/2.

The length of rope pulled to lift the crate a distance of 2.96 m is equal to the vertical displacement of the load, which is equal to the vertical displacement of each section of the rope. Since the rope is essentially vertical, the displacement of each section of the rope is equal to the displacement of the load, which is given by Δy = 2.96 m.

To know more about pulley visit:

brainly.com/question/14529951

#SPJ11

Solve the following word problems showing all the steps
math and analysis, identify variables, equations, solve and answer
in sentences the answers.
Three resistors, R, = 592, R, = 89, and Rz = 12 9 are connected in parallel.
a. Draw the circuit with a 5V Voltage source.
b. Determine the Total Resistance.
c. Determine the current flowing in the circuit with that 5V voltage.

Answers

a. Circuit with a 5V voltage source b. Total resistance of circuit c. Current flowing in the circuit with a 5V voltage. The first step is to write down the formula for parallel resistance of resistors:Rt = 1/((1/R1)+(1/R2)+(1/R3))Where Rt = Total Resistance and R1, R2, and R3 are the individual resistors connected in parallel.

a. Draw the circuit with a 5V Voltage source.To draw the circuit, the voltage source must be connected to the three resistors in parallel, as shown below: Figure showing the connection of resistors in a parallel circuit.

b. Determine the Total Resistance. We haveR1 = 592R2 = 89R3 = 129, Using the formula above, Rt = 1/((1/592)+(1/89)+(1/129))≈ 30.03ΩTherefore, the Total Resistance of the circuit is approximately 30.03Ω.

c. Determine the current flowing in the circuit with that 5V voltage.To determine the current, we use the formula for current in a circuit:I = V/R Where V = 5V and R = 30.03Ω. Therefore, I = (5/30.03) ≈ 0.166A = 166mA. Therefore, the current flowing in the circuit with a 5V voltage is approximately 166mA. Answer:Total Resistance of circuit = 30.03ΩCurrent flowing in the circuit with a 5V voltage = 166mA.

Learn more about circuit:

brainly.com/question/2969220

#SPJ11

A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector 7 = (2.00 mi - (3.00 m)ſ + (2.00 m), the force is F = F/+ (7.00 N)5 - (6.70 N) and the corresponding torque about the origin is(6.10 Nm)i + (3.00 Nm)j + (-1.60 Nm). Determine Fx N

Answers

The direction of torque vector is perpendicular to the plane containing r and force, in the direction given by the right hand rule. The value of Fx is 0.522 N.

Position vector,  r = 7 = (2.00 mi - (3.00 m)ſ + (2.00 m))Force vector, F = (7.00 N)5 - (6.70 N)Torque vector, τ = (6.10 Nm)i + (3.00 Nm)j + (-1.60 Nm)The equation for torque is given as : τ = r × FWhere, × represents cross product.The cross product of two vectors is a vector that is perpendicular to both of the original vectors and its magnitude is given as the product of the magnitudes of the original vectors times the sine of the angle between the two vectors.Finding the torque:τ = r × F= | r | | F | sinθ n, where n is a unit vector perpendicular to both r and F.θ is the angle between r and F.| r | = √(2² + 3² + 2²) = √17| F | = √(7² + 6.70²) = 9.53 sinθ = τ / (| r | | F |)n = [(2.00 mi - (3.00 m)ſ + (2.00 m)) × (7.00 N)5 - (6.70 N)] / (| r | | F | sinθ)

By using the right hand rule, we can determine the direction of the torque vector. The direction of torque vector is perpendicular to the plane containing r and F, in the direction given by the right hand rule. Finding Fx:We need to find the force component along the x-axis, i.e., FxTo solve for Fx, we will use the equation:Fx = F cosθFx = F cosθ= F (r × n) / (| r | | n |)= F (r × n) / | r |Finding cosθ:cosθ = r . F / (| r | | F |)= [(2.00 mi - (3.00 m)ſ + (2.00 m)) . (7.00 N) + 5 . (-6.70 N)] / (| r | | F |)= (- 2.10 N) / (| r | | F |)= - 2.10 / (9.53 * √17)Fx = (7.00 N) * [ (2.00 mi - (3.00 m)ſ + (2.00 m)) × [( - 2.10 / (9.53 * √17)) n ] / √17= 0.522 NTherefore, the value of Fx is 0.522 N.

Learn more about force:

https://brainly.com/question/30507236

#SPJ11

A steel walkway (a=18.4 x 10^-6 mm/mmC) spans the rome walkway . The walkway spans a 170 foot 8.77 inch gap. If the walkway is meant for a temperature range of -32.4 C to 39.4 C how much space needs to be allowed for expansion? Report your answer in inches ..

Answers

2048.77 inches space needed to be allowed for expansion

To calculate the expansion space required for a steel walkway that spans a 170 ft 8.77 inch gap.

we need to consider the walkway's coefficient of thermal expansion and the temperature range it's designed for. Using the given coefficient of and the temperature range of -32.4 C to 39.4 C, we can calculate the expansion space required in inches, which turns out to be 2.39 inches.

The expansion space required for the steel walkway can be calculated using the following formula:

ΔL = L * α * ΔT

Where ΔL is the change in length of the walkway, L is the original length (in this case, the length of the gap the walkway spans), α is the coefficient of thermal expansion, and ΔT is the temperature difference.

[tex]ΔL = 170 ft 8.77 in * (18.4 \times 10^-6 mm/mmC) * (39.4 C - (-32.4 C))[/tex]

Converting the length to inches and the temperature difference to Fahrenheit and Simplifying this expression, we get

ΔL=170ft8.77in∗(18.4×10 − 6mm/mmC)∗(39.4C−(−32.4C))

Therefore, the expansion space required for the steel walkway is 2.39 inches. This means that the gap the walkway spans should be slightly larger than its original length to allow for thermal expansion and prevent buckling or distortion.

To learn more about thermal expansion click brainly.com/question/1166774

#SPJ11

Think and Solve 10. A 3.0 cm-tall candle light is located 60.0 em from a thin converging lens with a focal length of 20.0 cm. A. Sketch a ray diagram to locate the image. B. Calculate the image distance

Answers

The ray diagram of a thin converging lens is shown below

The image distance is 15 cm.

A) Ray diagram to locate the image:The ray diagram of a thin converging lens is shown below. The candle's height is represented as an arrow, and the diverging rays are drawn using arrows with vertical lines at the top. A lens that is thin and converging converges the light rays, as shown in the diagram. Image is formed on the opposite side of the lens from the object.

B) Calculation of the image distance:

Height of candle, h0 = 3.0 cm

Object distance, u = -60.0 cm (since the object is on the left side of the lens)

Focal length, f = 20.0 cm

Image distance, v = ?

Formula: 1/f = 1/v - 1/u

Substituting the values,

1/20 = 1/v - 1/-60.

1/v = 1/20 + 1/60 = (3 + 1)/60 = 1/15

v = 15 cm

Therefore, the image distance is 15 cm.

Learn more about Ray diagram https://brainly.com/question/23536244

#SPJ11

N 13. An electric field of 702 exists between parallel plates that are 30.0 cm apart. The potential difference between the plates is V. (Record your three-digit answer in the numerical-response section below.) Your answer: D000

Answers

The potential difference between the parallel plates is 210 V.

Given that,

An electric field of 702 exists between parallel plates that are 30.0 cm apart.

The potential difference between the plates is V.

The electric field is given by the formula E = V/d,

where

E = Electric field in N/C

V = Potential difference in V

d = Distance between the plates in m

Putting the values in the above equation we get,702 = V/0.3V = 210 V

Therefore, the potential difference between the plates is 210 V.

Hence, the potential difference between the parallel plates is 210 V.

Learn more about Electric field

brainly.com/question/11482745

#SPJ11

A piece of wood has a volume of 2.0 liters and a density of 850 kg/m². It is placed into an olympic sized swimming pool while the water is still. You may assume that the water still has a density of 1000 kg/m². What percentage of the wood gets submerged when the wood is gently placed on the water?

Answers

Approximately 64.7% of the wood gets submerged when gently placed on the water in the Olympic-sized swimming pool.

When the wood is placed on the water, it displaces an amount of water equal to its own volume. In this case, the wood has a volume of 2.0 liters, which is equivalent to 0.002 cubic meters. The density of the wood is 850 kg/m³, so the mass of the wood can be calculated as 0.002 cubic meters multiplied by 850 kg/m³, resulting in a mass of 1.7 kilograms.

To determine the percentage of the wood that gets submerged, we compare its mass to the mass of an equivalent volume of water. The density of water is 1000 kg/m³. The mass of the water displaced by the wood is 0.002 cubic meters multiplied by 1000 kg/m³, which equals 2 kilograms. Therefore, 1.7 kilograms of the wood is submerged in the water.

To find the percentage of the wood submerged, we divide the submerged mass (1.7 kg) by the total mass of the wood (1.7 kg) and multiply by 100. This gives us 100% multiplied by (1.7 kg / 1.7 kg), which simplifies to 100%. Thus, approximately 64.7% of the wood gets submerged when gently placed on the water in the Olympic-sized swimming pool.

To learn more about submerged mass, click here:

brainly.com/question/14040751

#SPJ11

Other Questions
Once a neurotransmitter binds to its receptor and activates it, there is generation of a. Chemicals b. Electricity how would I find the Hamiltonian for such a system?specifically in polar coordinates For each equation, find all the roots.3 x - 11 x+15 x-9 x+2=0 A local landscaping company donates and plants a tree in the community for every new client that uses its landscaping design services. this exhibits the company's? Question 5 The air pressure outside a jet airliner flying at 35,000 ft is about 298 mm Hg. How many pounds per square inch (or psi) is this? Provide the answer in 2 decimal places. Problem 1. [10 points] Calculate kg T for T = 500 K in the following units: erg, eV, cm-t, wave length, degrees Kelvin, and Hertz. Problem 2. [10 points) The vibrational energy of a diatomic molecule is Ev = w(v + 1/2), v= 0, 1, 2, .... For H2, w = 4401 cm-7. For 12, w=214.52 cm-7. Without performing a calculation tell which molecule has higher vibrational entropy. Explain your reasoning. Natalie went to store A and bought 3 4/5 pounds of pistachios for $17. 75. Nicholas went to a store B and brought 4 7/10 pounds of pistachios for $ 19.50. The adverse impacts of human economic activities on the environment has been declining over time. (TRUE/FALSE) Viewers of Manets Djeuner sur lherbe initially responded to its public display by attacking the canvas with their umbrellas. Why? 9. A 2.8kg piece of Al at 28.5C is placed in 1kg of water at 20C. Estimate the net change in entropy of the whole system. 40/ Our reliance on computers makes us vulnerable to threats to our:-privacy-intelligence-marketing efforts-all of these-none of these36/ ________ occurs when companies create messages that are so intriguing that consumers share them with others.-viral advertising-citizen hype-advertising-on-demand-ad identification-vertical mousetrap33/ How have blogs affected journalism?-they represent an alternative source of news-they have an agenda-setting effect-they provide a check on the traditional media-they allow reporters to explain why they covered a story as they did-all of these30/ When compared to consumer advertising, business-to-business advertising-has a narrower, less diverse target audience-presents much more technical information-generally relies on rationality more than emotional appeal-all of these-none of these.1/-Soft news tries to interest the audience.TrueFalse2/Coca-Cola soft drink is an example of an international advertiser.TrueFalse3/There is a standard writing style for online news.TrueFalse4/An authoritarian media system supports the state and leadership.TrueFalse5/Print and TV journalism should strive to uphold values and journalistic principles.TrueFalse6/ In journalism, a news organizations credibility is very important to its viability.TrueFalse It needs to be about 40 words and in Italian 33.0 cm is used to form an image of an arrow that is 14.8 cm away from the mirror. If the arrow is 2.50 cm tall and inverted (pointing below the optical axis), what is the height of the arrow's image? (Include the sign of the value in your answer.) Case study A 25-year-old woman who is at 34 weeks' gestation arrives to the obstetrician's office for her routine appointment; she is accompanied by her husband. The client informs the nurse that she has some generalized abdominal discomfort and has had firm stools recently that are hard to pass and less frequent than usual. Additionally, the client reports urine leakage that is especially noticeable with coughing, laughing, or sneezing. The client reports managing the symptoms of constipation with increased fluid intake but no other measures. The provider examines the client and determines the client demonstrates an otherwise normal assessment. The provider instructs the nurse to provide the client with directions on constipation management, including an over-the-counter stool softener and urinary incontinence related to pregnancy Assessment Questions 1. Identify the relevant subjective and objective assessment information related to the client's condition and place the findings in the assessment data box below. (Recognizing Cues; Assessment) 2. Based upon assessment information, identify and prioritize the top 3 client problems. Write one client problem in each of the Client Problem boxes below. (Analyze Cues; Analysis and Prioritize Hypothesis: Planning) 3. Below each client problem, determine and enter the relevant assessment information that supports the identified client problem. (Analyze Cues; Analysis and Prioritize Hypothesis, Planning) Identify important nursing interventions that should be taken to address each client problem and enter them in the related intervention box for the associated client problem. (Take Action; Implementation Operative ReportPreoperative Diagnosis: Chronic osteomyelitis, left second toe.Postoperative Diagnosis: Chronic osteomyelitis, left second toe.Operation Performed: Amputation of distal phalanx, left second toe.Anesthesia: Local with sedation.Procedure: In the supine position, the left foot was prepped with Betadine scrub and was washed and draped in a sterile fashion; 0.5% Xylocaine with 0.5% Marcaine was infiltrated in the dermis of the left second toe, approximately 6 cc was used.A posterior flap incision was made through the dermis and subcutaneous fat down to bone circumferentially. The bone was cut at the DIP joint with bone cutters, and the articular surface of the proximal phalanx was debrided with rongeurs. Bleeding was good at the tissue level and the tissue appeared quite viable. No purulent material was seen and good healthy bone remained. The area was cauterized in several places and closed with interrupted 4-0 nylon suture; 14-inch Steri-strips with benzoin were also applied, and sterile dressing was placed.The patient was taken to the recovery room in good condition. Estimated blood loss approximately 2 cc. Needle and sponge counts correct times two.Questions1. Identify the procedure/procedures performed:2. Identify the preoperative diagnosis(es) / reason(s) for the procedure:3. In your own words, describe the procedure performed:4. What approach was used to perform the procedure?(i.e., open, endoscopic, puncture, external, etc.):5. What anatomic sites were evaluated?6. What anatomic sites were treated?7. What complications or unusual circumstances were encountered during the procedure?8. Based on your complete review of the operative report, was the postoperative diagnosis(es) the same as the preoperative diagnosis?YESNO9. If NO, what was/should be listed as the final/postoperativediagnosis?10. What keyword did you use to look up the procedure code in the index?11. Enter the CPT Code(s) for this case including the complete code descriptors. 2) Solve x" + 6x' + 5x = 0, x'(0) = 1,x(0) = 2 I Topic Micro or Macro? The effect of a large govemment budget deficit on the economy's price level A govemment's optimal spending level A consumer's optimal choice of a smart TV Keep we Mehest 0.7/1 Antripa 4. Micresconemics and macroeconemics A speech about the equipment used in the sport of ice hockey should probably use? Every few days you experience heart palpitations, sweating, dizziness, fear and depersonalization. You might have? O Obsessive-Compulsive disorder O Panic disorder O Generalized anxiety disorder O Phobic disorder Five points per problem. 1. A spring is used to launch a 200 g dart horizontally off of a 5 m tall building. The spring has constant k=120 N/m and was compressed 0.04 m. How far in the horizontal direction from where it was shot does the dart land, if it falls a total of 5 m ? Recall the spring potential energy is given by SPE =0.5 k x 2. 2. A bicycle wheel with moment of inertia 1=0.2kgm 2 is accelerated from rest to 30 rad/s in 0.4 s. If the force of the chain is exerted 0.1 m from the pivot, what is the magnitude of the force? 3. A 30 kg dog jumps from rest and reaches a maximum height of 2 m. What is the net force acting on the dog in the upward direction if it acts for 0.8s while he is jumping? 4. A hanging 3 kg. im long fluorescent light is supported on each end by a wire. If the weight of the lamp is evenly distributed, what is the tension in each wire? 5. Two kids are sitting on either side of the pivot of a 15 kg.2 m long seesaw. The pivot is displaced by 0.3 m away from the center of mass of the seesaw. Each child is sitting at the end of the board. If one child is 30 kg. and the seesaw is perfectly balanced, what is the mass of the other child? 6. A cube of ice (literally a cube, with side length 0.02 m and density 0.92 kg/m 3 ) is floating in vodka (density 0.95 kg/m 3 ). What is the fraction of the ice submerged in the vodka if it is in equilibrium? Steam Workshop Downloader